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Abstract

In surveys, text answers from open-ended questions are important because they

allow respondents to provide more information without constraints. When classi-

fying open-ended questions automatically using supervised learning, often the ac-

curacy is not high enough. Alternatively, a semi-automated classification strategy

can be considered: answers in the easy-to-classify group are classified automat-

ically, answers in the hard-to-classify group are classified manually. This paper

presents a semi-automated classification method for multi-label open-ended ques-

tions where text answers may be associated with multiple classes simultaneously.

The proposed method effectively combines multiple probabilistic classifier chains

while avoiding prohibitive computational costs. The performance evaluation on

three different data sets demonstrates the effectiveness of the proposed method.

1 Introduction

Open-ended questions in surveys are often manually classified into different class or

categories. When data are large, manual classification is time consuming and expensive

in the sense that it requires professional human coders with sufficient knowledge. At the

same time, analyzing the text answers from open-ended questions is important because
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they do not constrain respondents’ answers and thus may give more accurate information

than closed-ended questions (Schonlau and Couper, 2016).

The advance of statistical learning techniques can be used for automatic classification

for text data from open-ended questions. A statistical learning model such as Support

Vector Machines (SVM) (Vapnik, 2000) and Random Forests (Breiman, 2001) may be

trained based on training data and used to predict new data. Analyzing text data from

open-ended questions with statistical learning methods has received increasing attention

in social sciences (Matthews et al., 2018; Ye et al., 2018).

While the use of statistical learning methods reduces the total cost for the coding

task, fully automated classification for open-ended questions remains challenging. It is

often difficult to achieve an overall classification accuracy as high as the accuracy that

can be achieved by human coders and with a classification accuracy which is acceptable

to use for research purposes. Semi-automated classification uses statistical approaches

to partially automated classification in that easy-to-classify answers are categorized

automatically and hard-to-classify answers are categorized manually. (Gweon et al.,

2017; Schonlau and Couper, 2016).

Answers to open-ended questions are often associated with multiple categories si-

multaneously. In the community of machine learning, this type of data is referred to

as multi-label data. This is different from the traditional multi-class data where a text

answer can only belong to a single class or label. Recently, Schonlau et al. (to appear)

evaluated the use of existing machine learning algorithms for fully automated coding of

multi-label open-ended questions.

This paper focuses on semi-automated classification for multi-labelled text data

from open-ended questions. As far as we are aware, there is no published work on

semi-automated classification for multi-label data. Most of the previous work on semi-

automated classification deal with multi-class data. Also most research in machine

learning that analyzes multi-label data assumes fully automated classification. In this

paper we consider existing algorithms for multi-label data that may be suitable for semi-

automatic classification. We also propose a new method to improve the classification

performance of existing methods in the specific context of multi-label semi-automatic

classification. This is illustrated with three examples of multi-labelled text data from
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open-ended questions. We show that the proposed method can achieve a higher accu-

racy than Binary Relevance, Label Powerset, and Probabilistic Classifier Chains (Dem-

bczyński et al., 2010) for semi-automated classification.

The rest of this paper is organized as follows: In Section 2, we review elements

of semi-automated classification for open-ended questions. In Section 3, we review ap-

proaches to multi-label classification. In Section 4, we present the details of the proposed

approach. In Section 5, we evaluate the proposed method as well as other commonly

used algorithms based on multi-label text data from open-ended questions. In Section

6, we conclude with a discussion.

2 Semi-automated classification for text data

This section describes how text answers to open ended-questions are converted into

ngram variables and how a learning algorithm is evaluated in semi-automated classifi-

cation.

2.1 Converting text answers into ngram variables

To use text answers as the input features for a learning algorithm, we may transform the

original texts into a different representation using text mining approaches. A common

transformation approach is to create indicator variables, each of which indicates the

presence or absence of a certain word (unigram) or a short word sequence (bigram, or

more generally, ngram variables) (Sebastiani, 2002; Schonlau et al., 2017). Applying

this technique, we may convert any text answer into a vector in which each element is

binary and corresponds to a word (or a word sequence). Instead of indicator variables,

variables containing word frequency can also be used (Manning et al., 2008; Guenther

and Schonlau, 2016).

Typically, there are several thousands of ngram variables including redundant words.

We may reduce the number of ngram variables by applying some preprocessing tech-

niques such as stemming (i.e. reducing words to their grammatical root) and threshold-

ing (i.e. removing words occurred less than a certain time) and removing very common

words (stopwords) (Manning et al., 2008; Guenther and Schonlau, 2016).
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2.2 Production rate

Semi-automated classification requires a score or a probability that shows a level of con-

fidence about the prediction. A threshold on that score or probability divides the text

answers into easy-to-classify and hard-to-classify texts. All new text answers with high

scores above a threshold may be categorized automatically and all others are categorized

manually. The threshold is a user-specified value and can be set depending on the com-

bination of desired prediction accuracy in the easy-to-classify group and the acceptable

number of difficult-to-classify answers that need manual coding. The production rate

refers to as the fraction of text answers that belong to the easy-to-classify group. That

is, the production rate is the proportion of observations that can be categorized auto-

matically. In general, production rate and accuracy are inversely related. If we chose a

low production rate, only the easiest answers will be in the easy-to-classify group and

the accuracy of the automatic classification will be high. If we increase the production

rate, more complicated answers will be automatically classified and accuracy will tend

to decrease.

For multi-label data, the definition of accuracy is no longer obvious. Evaluation

measures for multi-label data are discussed in Section 3.1.

3 Multi-label classification

Consider a set of possible output labels L = {1, 2, ..., L}. In multi-label classification,

each instance with a feature vector x ∈ Rd is associated with a subset of these labels.

Equivalently, the subset can be described as Y = (y1, y2, ..., yL), where yi = 1 if label i

is associated with the instance, and yi = 0 otherwise. A multi-label classifier h learns

from training data to predict h(x) = Ŷ = (ŷ1, ŷ2, ..., ŷL) for a given x.

Next, we review some common multi-label algorithms and their relationship to an

evaluation criterion, subset accuracy.
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3.1 Evaluating multi-label algorithms in semi-automated classi-

fication

Evaluating the classification of a text answer into a single label is straightforward: the

label is either correct or not and accuracy refers to the percentage of correctly classified

answers; equivalently, error refers to the percentage of misclassified answers. For answers

that are classified into multiple labels, there are several ways to combine the accuracy

of each single label to an overall evaluation measure for the set of multiple labels. These

evaluation measures include subset accuracy, Hamming loss, F-measure and log loss.

For a predicted set of multiple labels, subset accuracy is 1 if all of the L labels are

correctly predicted and 0 otherwise. Hamming loss evaluates the fraction of misclassified

labels. F-measure is the harmonic mean of precision and recall and log loss evaluates

the uncertainty of the prediction averaged over the labels when a probability score for

each label is given.

In this paper we develop a methodology for subset accuracy (equivalently, in terms

of loss, 0/1 loss). This is a strict metric because a zero score is given even if all labels

are correctly classified except one. However, subset accuracy is appropriate for semi-

automated classification because if an algorithm has difficulty classifying even a single

label, the entire observation needs to be manually classified. That is, automated classi-

fication shall be conducted only if the model is highly confident in the entire predicted

label set.

Because subset accuracy requires that all labels are simultaneously correctly classi-

fied, we are interested in finding the label set Y ∗ that maximizes the joint probability

conditional on a text answer x:

Y ∗ = argmax
Y

P (Y|x) = argmax
Y

P (y1, ..., yL|x).

In the next section we discuss common approaches to estimating the joint probability

proposed in the machine learning community.
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3.2 Multi-label approaches that optimize subset accuracy

Various approaches have been proposed for predicting multi-label outcomes. Since we

use subset accuracy as the evaluation measure, we focus on methods that aim to maxi-

mize the joint conditional distribution.

The simplest approach, called Binary Relevance (BR), transforms a multi-label prob-

lem into separate binary problems. That is, BR constructs a binary classification model

for each label independently. For an unseen observation, the prediction set of labels

is obtained simply by combining the individual binary results. In other words, the

predicted label set is the union of the results predicted from the L binary models. If

each of the binary models produces probability outcomes, BR can produce an esti-

mate for P (y1|x)P (y2|x)...P (yL|x). Note that this coincides with the joint probability

P (y1, ..., yL|x) if the labels are independent (conditional on x). This implies that the

product of the probabilities obtained by BR will estimate P (y1, ..., yL|x) accurately only

if the labels are conditionally independent. The joint probability may be inaccurate if

the labels are substantially correlated given x.

Another approach tailored for subset accuracy is Label Powerset learning (LP). This

approach transforms a multi-label classification into a multi-class (i.e. multinomial)

problem by treating each unique label set Y that exists in the training data as a single

class. For example, when L=3 there could be up to 23 classes ci, (i = 1, ..., 8) observed

in the training data. Then any algorithm for multi-class problems can be applied using

the transformed ci classes. Training a multi-class classifier takes into consideration

dependencies between labels. For a new observation, LP predicts the most probable

class (i.e. the most probable label set). If an algorithm for multi-class data gives

probabilistic outputs (some algorithms classify without computing probabilities), LP

directly estimates the class probabilities (i.e. the joint probability P (Y|x)). However,

this approach cannot estimate the joint probability for any label set unseen in the

training data. As a consequence, if the true label set of the new observation is an

unseen observation the prediction cannot be correct. Another drawback of LP is that

the number of classes in the transformed problem can increase exponentially (up to 2L

number of classes). This can be problematic when L is large since each combination of

labels may be present in just one or a few observations in the training data which makes
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the learning process difficult.

A third approach to multi-label learning is Classifier Chains (CC) (Read et al., 2009,

2011). As in binary relevance, in CC also a binary model is fit for each label. However,

CC fits the binary models sequentially and uses the binary label results obtained from

previous models as additional predictors in subsequent models. That is, the model

for the ith label yi uses x and y1, ..., yi−1 as features. (For example, the model for y1

uses x as features, the model for y2 uses x and y1 as features and so on.) Passing

label information between binary classifiers allows CC to take label dependencies into

account. In the prediction stage, CC successively predicts the labels one at a time. The

prediction results of the previous labels are used for predicting the next label in the

chain.

This idea is extended to Probabilistic Classifier Chains (PCC) (Dembczyński et al.,

2010). PCC explains CC using a probabilistic model. Specifically, the conditional joint

distribution can be described as

P (y1, ..., yL|x) = P (y1|x)

L∏
j=2

P (yj |y1, ..., yj−1,x). (1)

and PCC estimates the probabilities P (y1|x), P (y2|x, y1), ..., P (yL|x, y1, y2, ..., yL−1).

PCC finds the label set that maximizes the right hand side of equation (1). However,

there is no closed-form solution for finding the label set. A few different solutions have

been suggested. Dembczyński et al. (2010) used an exhaustive search (ES) that considers

all possible combinations. However, an exhaustive search may not be practical when

L is large, because the number of possible combinations (2L) increases exponentially.

To overcome this problem, optimization strategies based on the uniform cost search

(UCS) (Dembczyński et al., 2012) and the A∗ algorithm (Mena et al., 2015) have been

proposed. First, the estimated joint conditional probability may be represented by a

probability binary tree. Then a search algorithm finds the optimal path (in our case,

the path that gives the highest joint probability) from the root and the terminal node.

Compared with ES, UCS substantially reduces the computational cost for PCC to reach

the label set with the highest joint probability (Dembczyński et al., 2012).

In theory, when applying the product rule, the order of the categories y1, ..., yL

does not matter. For example, both P (y1|x)P (y2|y1,x) and P (y2|x)P (y1|y2, x) equal to
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P (y1, y2|x). In practice, the two chains may lead to different estimates. This means the

performance of PCC may be affected by the order of the labels in the chain.

To alleviate the influence of the category order, an ensembling approach (EPCC)

(Dembczyński et al., 2010) that combines multiple probabilistic chains has been pro-

posed. First m PCC models are trained where each PCC model is based on a random-

ized order of the labels. In the prediction stage, the average conditional joint probability

over the m PCC models is computed for each possible label set. Then the predicted

label set is the label set with the highest average predicted probability. Let P̂j(Y|x)

be the conditional joint probability estimated by the jth PCC model. The ensemble

strategy predicts the label set Ŷ such that

Ŷ = argmax
Y

∑m
j=1 P̂j(Y|x)

m
.

Note that EPCC does not combine the predicted label sets but conditional joint prob-

abilities. To find the highest average probability from m PCC models, all individual

probabilities are required and this forces us to use ES to compute the conditional joint

probability for all 2L label combinations from all m PCC models. Hence, although

EPCC reduces the problem of influence of label order, the method will not be useful

if the problem deals with a large number of labels or when m is large. To reduce the

computational cost for combining multiple PCC models, we propose a new approach to

ensembling the PCC models in the next section.

4 The majority-voted-based ensemble of PCC for semi-

automated classification

The proposed method aims to ensemble multiple PCC models at much less compu-

tational cost. As mentioned in Section 3.2, the best label set (with the highest joint

probability) for a single PCC can be found by a fast search strategy. In this paper, we

use UCS, since the implementation is simple and the algorithm always finds the opti-

mal solution. Using UCS, the proposed method obtains Ŷj (j = 1, ...,m), the label set

predicted by the jth PCC model and P̂j , the estimated probability that Ŷj is the true

label set. Among the m predicted label sets, the proposed method chooses the most
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frequent label set for the final prediction. That is, Ŷ = mode({Ŷ1, ..., Ŷm}). In case

there are ties in the mode, we choose the label set whose averaged probability estimate

is the highest.

Semi-automatic classification requires a score that measures how easy/hard the pre-

diction is. Whether a text answer is classified automatically or manually is determined

based on this score. Next, a score is proposed: Let J be the set that contains all indices

j (1 ≤ j ≤ m) for which Ŷj is the most frequent one (i.e. J = {j : Ŷj = Ŷ}). The

proposed score for the prediction is

θ =

(∑
i∈J P̂j

|J |

)(
|J |
m

)
(2)

=

∑
i∈J P̂j

m
. (3)

The first factor of equation (2) is the average joint probability of the predicted label set.

The second factor of equation (2) is the fraction of the PCC models that predict the

predicted label set among the m models. Multiplying the two components makes sense:

a prediction may be more accurate if the (average) probability related to the chosen

label set is high (the first factor) and more individual chain models vote for the same

label set (the second component). We call this approach Majority-vote-based Ensemble

of Probabilistic Classifier Chains (MEPCC). We later show empirically that combining

the two factors indeed improves performance over just using a single factor. Table 1

illustrates an example for 5 labels (L=5) and 7 PCC models (m=7). The MEPCC ap-

Table 1: An example of the MEPCC classification of a single observation with L = 5
and m = 7.

PCC model Prediction y1 y2 y3 y4 y5 P (y1, ..., y5|x)

1 Ŷ1 1 1 0 0 1 0.875

2 Ŷ2 1 1 0 0 1 0.921

3 Ŷ3 0 0 1 1 0 0.743

4 Ŷ4 0 0 0 1 0 0.882

5 Ŷ5 0 0 0 1 0 0.643

6 Ŷ6 0 1 0 1 0 0.739

7 Ŷ7 1 1 0 0 1 0.824

final prediction Ŷ 1 1 0 0 1 θ = 0.875+0.921+0.824
7 = 0.374

proach stores the probability of one label set from each PCC model. Because MEPCC

9



combines over the probabilities corresponding to the best label set from different PCC

models, MEPCC can take advantage of the UCS (or any other) strategy. Note that a

search strategy like UCS cannot be used for EPCC where all individual probabilities

for all label combinations are required. More succinctly, MEPCC combines over the

maximal probabilities of each PCC, whereas EPCC maximizes over the average proba-

bilities, requiring evaluation of all individual probabilities. We summarize the procedure

of MEPCC in Algorithm 1.

Algorithm 1 The MEPCC algorithm

Input: Number of models m, an instance vector x, corresponding PCC models hj ,
the uniform cost search algorithm U
for j = 1 to m do

(a) Using hj and U , obtain Ŷj = argmaxY P (Y|x)

(b) Store P̂j = P (Ŷj |x)
end for
Obtain the label set Ŷ = mode({Ŷ1, ..., Ŷm})
Obtain J = {j : Ŷj = Ŷ}
Obtain the score θ =

∑
i∈J P̂j

m

Return Ŷ and θ

5 Experiments

5.1 Data

We evaluated the performance of the MEPCC algorithm on three different data sets:

Civil disobedience, Immigrant and Happy data1. For each data set, an open-ended

question was asked to the respondents and their answers have been coded manually

with possibly multiple labels.

The Civil data set was collected to study cross-cultural equivalence about Civil dis-

obedience. Behr et al. (2014) first asked respondents a closed-ended question from the

ISSP (ISSP Research Group, 2012) How important is it that citizens may engage in acts

of Civil disobedience when they oppose government actions? (Not at all important 1

— Very important 7). The respondents were then asked: What ideas do you associate

with the phrase ‘Civil disobedience? Please give examples. Answers were classified into

1The Happy data are available upon request by contacting Marika Wenemark
marika.wenemark@liu.se. The Immigrant and Civil Disobedience data are available from the
GESIS Datorium http://dx.doi.org/10.7802/1795
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12 labels: non-productive, violence, disturbances, peaceful, listing activities, breadth of

actions, breaking law, breaking rules, government:dissatisfaction, government:deep rift,

copy/paste from the Internet, other. The survey data were collected in different lan-

guages and we use a merged data set (Spanish, German and Danish) that contains 1029

observations.

The Immigrant data set was collected to study cross-national equivalence of measures

of xenophobia. In the 2003 International Social Survey Program (ISSP) on National

Identity, the questionnaire contained four statements regarding beliefs on Immigrants

such as Immigrants take jobs from people who were born in Germany. After rating each

statement, respondents were asked to answer to an open-ended question: Which type of

Immigrants were you thinking of when you answered the question? The previous state-

ment was: [text of the corresponding item]. Braun et al. (2013) classified answers into

14 labels: non-productive, positive, negative, neutral/work, general, Muslim countries,

eastern European, Asia, ex-Yugoslavia, EU15, sub Sahara, Sinti/Roma, legal/illegal,

other. In this article, we use 1006 observations from the German survey.

The Happy data set was collected to study the relationship between positive factors

and mental health and care needs. Wenemark et al. (2018) asked respondents ”Name

some positive things in your life, that are uplifting or make you Happy: (you may

write several things)”. Answers were classified into 13 labels: nothing, relationships

(family or romantic), working/studying, health, self-esteem, joy/happiness, well-being:

drinking/eating/drugs/sex, spirituality, money, nature, hobbies, culture, and exercise.

The data set contains 2350 observations.

Table 2 contains summary statistics about the three data sets.

Table 2: Summary statistics of data sets: number of total observations, features and
labels and average number of relevant labels, and percentage of observations that are
associated with more than one label (P|L|>1).

Data # observations # features L av. # of labels P|L|>1

Civil 1029 305 12 1.15 13.80%
Immigrant 1006 273 14 1.19 13.72%

Happy 2350 492 13 2.77 87.40%
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5.2 Experimental setup

We compared the proposed MEPCC method against BR and LP and PCC. For PCC,

we used the uniform search to reach a predicted label set and the estimated probability

of equation (1) for the confidence score of the prediction. EPCC was not included in the

comparison because its computational cost makes it infeasible for prediction for our data

sets2. Support vector machines (SVM) (Vapnik, 2000) were used as the base classifier

on unscaled variables with a linear kernel and tuning parameter C = 1. For probabilistic

output, the SVM scores were converted into probabilities using Platt’s method (Platt,

2000). The analysis was conducted in R (R Core Team, 2014) using the e1071 package

(Meyer et al., 2014) for SVM.

For each data set, 5-fold cross validation (CV ) was performed. That is, we randomly

divided the data into five equal-sized parts and used the first four parts as the training

data and the last part as the test data. Performance evaluation is only made on the test

data. Each of the five parts were used as test data and the results were averaged.

5.3 Performance of the MEPCC approach

We first investigated the performance of the MEPCC. The score in equation (2) has

two components. To demonstrate that both components are helpful, we evaluate the

proposed score as well as two different scores where one of the components is missing.

That is, we compared the MEPCC with three different scores θ, θ1 and θ2:

(MEPCC) θ =

(∑
i∈J Pj

|J |

)(
|J |
m

)
(MEPCC-1) θ1 =

(∑
i∈J Pj

|J |

)
(MEPCC-2) θ2 =

(
|J |
m

)
.

Prioritizing the text answers based on θ2 results in many ties. The tied answers were

randomly reordered to be able to calculate subset accuracy at each production rate.

Figure 1 shows the subset accuracy of each approach as a function of the production rate.

2In our experiment on the Immigrant data with 14 labels, running the exhaustive search for PCC
(m=1) for a single prediction took a single computer (Intel Core i7 CPU with 8GB RAM) over 30
minutes. This implies that predicting 200 observations using EPCC (m=10) would take more than
1000 hours.
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The text answers with higher scores were classified first. For example, production rate

0.2 means only 20% of the test data with the highest scores were classified automatically

by the models. When the production rate equals 1, there was no difference between the

MEPCC models because the predicted label sets are always the same. The difference is

how they prioritize the text answers from the easiest-to-classify to the hardest-to-classify

answers. When the production rate was less than 1, MEPCC outperformed MEPCC-1

and MEPCC-2 for all three data. The results show that both components in equation

(2) were helpful for prioritizing the observations.

(a) Civil (b) Immigrant

(c) Happy

Figure 1: Subset accuracy of three variations on MEPCC as a function of production
rate.
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5.4 Effect of the number of PCC models

We then investigated to what extent the number of PCC models affects the predictive

performance of MEPCC. Figure 2 shows the performance of MEPCC for different num-

ber of PCC models (m). When m was low, increasing m led to huge improvement of

the subset accuracy of MEPCC. However, once there were enough PCC models (e.g.

m=10), adding more PCC models did not improve the subset accuracy. The empirical

results show that MEPCC does not require many PCC models for performing well.

(a) Civil (b) Immigrant

(c) Happy

Figure 2: The effect of the number of PCC models (m) used for MEPCC

14



5.5 Comparison with other methods

At last we investigated the performance of MEPCC (m = 10) compared to the estab-

lished methods (BR, LP and PCC). For all methods, a production rate of x% refers to

the x% of the data that have the highest score. MEPCC used θ as a score, while each of

the other approaches used the probability of the predicted label set estimated by that

method. Note when m=1, MEPCC and PCC are identical; the score θ coincides with

the probability of the label set predicted by PCC.

Figures 3 and 4 illustrate the respective subset accuracy and Hamming loss for

the different methods as a function of the production rate on the Happy, Immigrant

and Civil data. For the Immigrant and Happy data, the highest subset accuracy at

most production rates was obtained by MEPCC. For the Civil data, MEPCC and LP

performed the best. In terms of Hamming loss, MEPCC achieved the lowest error at

most production rates for all data.
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(a) Civil (b) Immigrant

(c) Happy

Figure 3: Semi-automated result (subset accuracy) for the three data from the 5-fold
cross validation.
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(a) Civil (b) Immigrant

(c) Happy

Figure 4: Semi-automated result (Hamming loss) for the three data from the 5-fold cross
validation.

Next, we consider the performance of each method given target predicted accuracy

values. To decide the fraction of automatic categorization, a practitioner will typically

set a threshold probability above which texts are coded automatically. For MEPCC, the

relationship between true accuracy and the confidence score (θ) were estimated via cross-

validation on the training data. We used Platt’s scaling to convert the confidence scores

into probability outputs. Since Platt’s scaling could improve the level of calibration

(Niculescu-Mizil and Caruana, 2005), the same technique was also applied to BR, LP

and PCC.
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Table 3 illustrates the tradeoff between the percentages of automated prediction and

the corresponding subset accuracy of each method as a function of different thresholds.

The threshold refers to the minimum predicted subset accuracy required for automated

prediction. The minimum predicted subset accuracy helps us decide which text answers

should be classified automatically and which should be classified manually. For example,

if the client decides that at least 80% accuracy is required for automated classification,

then approximately 39.3% of the Civil data, 42.5% of the Immigrant data, and 27.6%

of the Happy data can be classified automatically by MEPCC with subset accuracy

0.891, 0.916 and 0.857, respectively. Note that this is a huge improvement compared

to applying BR that could only automatically classify 9.3% of the Civil data, 12.8% of

the Immigrant data, and 8.7% of the Happy data with lower subset accuracies. Table 4

shows the relationship between predicted and actual accuracy by aggregating to ranges of

predictions for each method and data set. For MEPCC the actual accuracy is within the

range of the predicted accuracy in most cases, much better than for the other methods.

Table 3: Semi-automated result for the three data at different decision thresholds. P rep-
resents the percentage of automated predictions and SA represents the subset accuracy
for the automated prediction results.

Data Threshold
BR LP PCC MEPCC

P SA P SA P SA P SA

Civil
0.9 0.7% 0.667 16.5% 0.967 0.0% NA 13.0% 0.978
0.8 9.3% 0.893 34.3% 0.898 15.1% 0.787 39.3% 0.891
0.7 18.4% 0.846 46.6% 0.852 36.4% 0.817 45.8% 0.860
0.6 25.4% 0.768 50.6% 0.831 52.1% 0.771 52.9% 0.820

Immigrant
0.9 3.7% 0.858 11.1% 0.959 1.3% 0.558 31.5% 0.947
0.8 12.8% 0.779 30.4% 0.890 27.7% 0.859 42.5% 0.916
0.7 26.6% 0.743 38.6% 0.863 42.4% 0.829 55.1% 0.862
0.6 41.7% 0.715 53.6% 0.806 50.5% 0.795 62.7% 0.839

Happy
0.9 1.3% 0.592 8.9% 0.850 0.1% 0.750 1.0% 0.830
0.8 8.7% 0.734 14.3% 0.802 7.2% 0.726 27.6% 0.857
0.7 32.8% 0.776 17.7% 0.793 29.9% 0.767 43.7% 0.817
0.6 53.2% 0.745 22.2% 0.761 49.2% 0.744 52.0% 0.790

Table 5 shows the runtime of each method for training the model and predicting all

instances in test data (Intel Core i7 CPU with 8GB RAM). Unsurprisingly, the runtime

of MEPCC at m = 10 is roughly 10 times of that of PCC in both of the training and

prediction stages.
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Table 4: Semi-automated result for the three data at different ranges of thresholds.
P represents the percentage of automated predictions and SA represents the subset
accuracy for the automated prediction results.

Data
Predicted BR LP PCC MEPCC
accuracy P SA P SA P SA P SA

Civil

[0.9, 1.0] 0.7% 0.667 16.5% 0.967 0.0% NA 13.0% 0.978
[0.8, 0.9) 8.7% 0.896 17.8% 0.834 15.1% 0.787 26.2% 0.846
[0.7, 0.8) 9.0% 0.769 12.2% 0.710 21.3% 0.828 6.5% 0.681
[0.6, 0.7) 7.0% 0.566 4.1% 0.584 15.7% 0.655 7.1% 0.563

Immigrant

[0.9, 1.0] 3.7% 0.858 11.1% 0.959 1.3% 0.558 31.5% 0.947
[0.8, 0.9) 9.1% 0.750 19.3% 0.843 26.4% 0.869 11.0% 0.829
[0.7, 0.8) 13.8% 0.710 8.2% 0.747 14.7% 0.757 12.5% 0.688
[0.6, 0.7) 15.1% 0.602 15.0% 0.659 8.1% 0.623 7.7% 0.670

Happy

[0.9, 1.0] 1.3% 0.592 8.9% 0.850 0.1% 0.750 1.0% 0.830
[0.8, 0.9) 7.4% 0.755 5.4% 0.717 7.1% 0.730 26.5% 0.858
[0.7, 0.8) 24.0% 0.792 3.4% 0.751 22.7% 0.779 16.2% 0.749
[0.6, 0.7) 20.4% 0.693 4.6% 0.615 19.3% 0.703 8.3% 0.647

Table 5: Runtime (in seconds) of each method for the three data

Data Stage BR LP PCC MEPCC

Civil Train 1.688 0.641 1.128 11.787
Prediction 0.269 0.044 37.142 374.611

Immigrant Train 1.363 0.510 0.894 8.724
Prediction 0.200 0.056 35.369 334.075

Happy Train 11.160 16.164 7.371 78.293
Prediction 0.567 3.691 177.847 1746.529
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6 Discussion

Using three examples, we have investigated several approaches for automated classifi-

cation for any desired production rate when data are multi-labeled. In terms of subset

accuracy and Hamming loss, the proposed method, MEPCC, achieved the best perfor-

mance at most production rates in all three data sets.

There were trade-offs between the prediction performance and the production rate

for all methods. At low production rates, high subset accuracy and low Hamming loss

were achieved for a small number of easy-to-classify answers. However, accuracy (loss)

tended to decrease (increase) as more difficult answers were included (i.e. production

rate increased).

Either subset accuracy or production rate can be set at a target rate which deter-

mines the second measure. For example, targeting 80% minimum subset accuracy for

an automated prediction, MEPCC categorizes 39.3% of the Civil data, 42.5% of the

Immigrant data, and 27.6% of the Happy data automatically. Such a reduction is con-

siderable. In an applied research environment, reducing the need for manual coding in

a data set with 5,000 a reduction by 50% may save several weeks of coding time. If

production rate is fix at 80%, MEPCC could achieve a subset accuracy of 70% (Civil),

75% (Immigrant), and 68% (Happy).

The Hamming loss represents the fraction of misclassified labels. Figure 4 show s

that the improvement of MEPCC over BR was quite noticeable at lower production

rates but relatively small at 100% production rate.

MEPCC outperformed PCC at most production rates on all three data. This shows

that combining multiple PCC models substantially improves the performance. As can

be seen from Figure 2, even combining 5 models resulted in a substantial improvement

throughout the whole range of production rate. The difference tended to be greater at

lower production rates. This means MEPCC is even more preferred for semi-automated

classification, where a high accuracy is required rather than a high production rate. The

performance of MEPCC converged as m increased in all three data sets. The difference

between the MEPCC models were negligibly small when m was larger than 10. This is

a desirable result in practice because employing too many PCC models for an ensemble

model is unnecessary.
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For all three data we found that the proposed method was not sensitive to the choice

of the search algorithm for each PCC model (results and figures not shown). That is, the

classification results of MEPCC with the uniform cost search were similar to those with

the greedy search. While the proposed method uses the uniform cost search, the greedy

approach may also be considered especially when the fast prediction time matters.

Figure 3 shows LP beats BR for the Civil and Immigrant data sets and BR beats

LP for the Happy data set with respect to subset accuracy. We see two reasons: 1) LP

performed well when the number of unique label sets was relatively small (Civil: 39,

Immigrant: 59). However, the performance of LP was not effective but less well for

the Happy data where the number of unique label sets was large (346). 2) BR does

not take into account correlations among the labels. BR beat LP where bivariate label

correlation were low (Happy data) and LP beat BR where bivariate label correlations

were larger (Civil and Immigrant Data). Compared to BR and LP, MEPCC seems to

be robust to those aspects (the number of unique label sets and the magnitude of label

correlations).

The semi-automatic procedure introduced here works best in repeated survey ques-

tions where results from previous waves have been labeled or for one-off questions where

the sample size is large. How large should the training data be? We have used 5-fold

cross-validation to evaluate the algorithm, but cross-validation is not appropriate in a

production environment. If the question was asked in a previous wave, train the al-

gorithm on all labeled data from all previous waves. If not, set a “sufficiently large”

number of texts aside for labeling and training, and use the semi-automatic procedure

on the remainder of the data. How large “sufficiently large” is depends on the task

at hand. For single labeling tasks we have found that often 500 training samples are

sufficient (Schonlau and Couper, 2016). There is a tradeoff: a larger data set predicts

more accurately but also reduces the scope for time savings as fewer unlabeled obser-

vations remain. Under reasonable assumptions, Schonlau and Couper (2016) suggested

human coding time savings for a single-label semi-automatic coding procedure attempt-

ing to code 1000 (9500) texts might be 14 (133) hours. 133 hours is equivalent to 16.6

eight-hour working days. Whether those time savings are large enough to warrant im-

plementation of a semi-automatic procedure may be best decided with knowledge of the
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specific task and in the context of the specific production environment.

If some label combinations cannot occur in individual data sets, such constraints

on label combinations may be added. For example, for the Happy data, if the label

“nothing is turned on all other labels must be turned off. Knowing that “nothing is

incompatible with other labels requires some domain expertise. It would be straightfor-

ward to modify the algorithm to accommodate this constraint. Of course, all methods

except BR already exploit dependencies between labels; implementing this constraint

may not affect performance very much. We did not implement such constraints in this

article to avoid the appearance of the algorithms heavily relying on the constraints.

Limitations of this work include that the experimental study was conducted using

three text data sets only. While there is no guarantee that performance will be equally

good on other data sets, data used in this paper consider different topics in different

languages, which increases the appeal of MEPCC. Also, all of the multi-label algorithms

in this article used the same base learner (SVM) for classification. While SVM is one

of the best performing approaches, other learning methods that produce probability

outcomes could be chosen.

In conclusion, we investigated semi-automated classification for open-ended ques-

tions when the data are multi-labelled using existing multi-label algorithms. We have

proposed a new algorithm for semi-automatic classification that effectively combines

multiple PCC models. The experimental results on three different example data show

that the proposed approach outperforms BR, LP and PCC in terms of subset accu-

racy and Hamming loss at most production rates. Although we focused on survey data

from open-ended questions, the proposed approach can also be applied to other types

of multi-label data when semi-automated classification is desired. A comprehensive

analysis encompassing a variety of data in the context of semi-automated classification

deserves further investigation.
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Mena, D., E. Montañés, J. R. Quevedo, and J. J. Del Coz (2015). Using A* for inference

in probabilistic classifier chains. In Proceedings of the 24th International Conference

on Artificial Intelligence, pp. 3707–3713. AAAI Press.

23



Meyer, D., E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch (2014). e1071: Misc

Functions of The Department of Statistics, TU Wien. http://CRAN.R-project.org/

package=e1071.

Niculescu-Mizil, A. and R. Caruana (2005). Predicting good probabilities with su-

pervised learning. In Proceedings of the 22nd International Conference on Machine

Learning, New York, NY, USA, pp. 625–632. ACM.

Platt, J. (2000). Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schu-

urmans (Eds.), Advances in Large Margin Classifiers, pp. 61–74. MIT Press.

R Core Team (2014). R: a Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing. http://www.R-project.org/.

Read, J., B. Pfahringer, G. Holmes, and E. Frank (2009). Classifier chains for multi-label

classification. In W. Buntine, M. Grobelnik, D. Mladenić, and J. Shawe-Taylor (Eds.),

Machine Learning and Knowledge Discovery in Databases, pp. 254–269. Springer.

Read, J., B. Pfahringer, G. Holmes, and E. Frank (2011). Classifier chains for multi-label

classification. Machine Learning 85 (3), 333–359.

Schonlau, M. and M. P. Couper (2016). Semi-automated categorization of open-ended

questions. Survey Research Methods 10 (2), 143–152.

Schonlau, M., N. Guenther, and I. Sucholutsky (2017). Text mining using ngram vari-

ables. The Stata Journal 17 (4), 866–881.

Schonlau, M., H. Gweon, and M. Wenemark (to appear). Automatic classification of

open-ended questions: Check-all-that-apply questions. Social Science Computer Re-

view . First published online August 20, 2019. https://journals.sagepub.com/doi/

full/10.1177/0894439319869210.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Com-

puting Surveys 34 (1), 1–47.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. 2nd edition. Springer.

24



Wenemark, M., M. Borgstedt-Risberg, P. Garvin, S. Dahlin, J. Jusufbegovic, C. Gamme,

V. Johansson, and E. Bjrn (2018). Psykisk hlsa i sydstra sjukvrdsregionen: En

kartlggning av sjlvskattad psykisk hlsa i jnkping. Kalmar och stergtlands ln hsten

2015/16. Retrieved from https://vardgivarwebb.regionostergotland.se/pages/

285382/Psykisk_halsa_syostra_sjukvarsregionen.pdf.

Ye, C., R. Medway, and C. Kelley (2018). Natural language processing for open-ended

survey questions. Paper presented at BigSurv18, Barcelona, Spain.

25


