
The Random Forest Algorithm for Statistical Learning

Matthias Schonlau
University of Waterloo

Ontario, Canada
schonlau@uwaterloo.ca

Rosie Yuyan Zou
University of Waterloo

Ontario, Canada
y53zou@uwaterloo.ca

1 Abstract

Random Forest[Breiman, 2001] is a statistical or machine learning algorithm for prediction. We
introduce a corresponding new Stata command, rforest. We give an overview of the Random
Forest algorithm and illustrate its use with two examples. The first example is a classification
problem that predicts whether a credit card holder will default on his or her debt; the second
example is a regression problem that predicts log-scaled number of shares of online news articles.
We conclude with a discussion that summarizes key points demonstrated in the examples.

2 Introduction

In recent years the use of statistical or machine learning algorithms has increased in the social
sciences.1 For instance, to predict economic recession, Liu et al. [2017] compared ordinary least
squares regression results with Random Forest regression results and obtained a considerably higher
adjusted R-squared value with Random Forest regression as compared to ordinary least squares
regression [Nyman and Ormerod, 2017]. In economics, a recent book gives an overview over various
machine learning algorithms for predicting economic growth and recession [Basuchoudhary et al.,
2017]. In environmental science, a recent paper used learning algorithms including LASSO regression,
Random Forest and neural networks to predict ragweed pollen concentration based on 27 years of
historical data and a total of 85 predictor variables, with the best predictive performance obtained
using Random Forests.

Why does Random Forest do better than linear regression for prediction tasks? Linear regression
makes the assumption of linearity. This assumption makes the model easy to interpret, but is often
not flexible enough for prediction. Random decision forests easily adapt to nonlinearities found in
the data and therefore tend to predict better than linear regression. More specifically, ensemble
learning algorithms like Random Forests are well-suited for medium to large data sets. When the
number of independent variables is larger than the number of observations linear regression and
logistic regression algorithms will not run as the number of parameters to be estimated exceeds the
number of observations. Random Forest works because not all predictor variables are used at once.

Random Forest is one of the best performing learning algorithms. For social scientists such
developments in algorithms are only useful to the extent that they can access an implementation
of the algorithm. This paper introduces a Stata command for Random Forests developed by the
authors that is built on the WEKA library [Frank et al., 2016, Hall et al., 2009].

The outline of this paper is as follows: In Section 3, we briefly discuss the Random Forest
algorithm. Section 5 gives an example for predicting whether a given credit card user will default

1Statistical learning and machine learning are synonymous. We use statistical learning for the remainder of the
article.

1

on his or her debt. Section 6 gives an example for estimating log-scaled number of shares of online
news articles. Section 7 concludes with a discussion.

3 The Random Forest algorithm

We first discuss tree models because they form the building blocks of the Random Forest algorithm.
A tree-based model involves recursively partitioning the given data set into two groups based on a
certain criterion until a predetermined stopping condition is met. At the bottom of decision trees
are so-called leaf nodes or leaves.

Figure 1 illustrates a recursive partitioning of a 2-dimensional input space with axis-aligned
boundaries; i.e. each time the input space is partitioned in a direction parallel to one of the axes.
Here, the first split occurred on x2 >= a2. The two subspaces where then again partitioned: The
left branch was split on x1 >= a4. The right branch was first split on x1 >= a1 and one of its
subbranches was split on x2 > a3. Figure 2 is a graphical representation of the subspaces partitioned
in Figure 1. Depending on how the partition and stopping criteria are set, decision trees can be

Figure 1: Recursive Binary Partition of a 2-Dimensional Subspaces

designed both for classification tasks (categorical outcome, e.g. logistic regression) and regression
tasks (continuous outcome).

For both classification and regression problems, the subset of predictor variables selected to split
an internal node depends on predetermined splitting criteria which is formulated as an optimization
problem. A common splitting criterion in classification problems is entropy, which is the practical
application of Shannon’s source coding theorem that specifies the lower bound on the length of a
random variables’ bit representation [Shannon, 2001]. At each internal node of the decision tree,
entropy is given by the formula

E = −
c∑

i=1

pi × log(pi)

where c is the number of unique classes and pi is the prior probability of each given class. This value
is maximized in order to gain the most information at every split of the decision tree. For regression
problems, a commonly used splitting criterion is the mean squared error at each internal node.

2

Figure 2: A Graphical Representation of the Decision Tree in Figure 1

A drawback of decision trees is that they are prone to over-fitting, which means that the model
follows the idiosyncracies of the test data set too closely and performs poorly on a new data set – i.e.
the test data. Over-fitting decision trees will lead to low general predictive accuracy, also referred
to as generalization accuracy.

One way to increase generalization accuracy is to only consider a subset of the observations
and build many individual trees. First introduced by Ho [1995], this idea of the random subspace
method was later extended and formally presented as Random Forest by Breiman [2001]. The
Random Forest model is an ensemble tree-based learning algorithm; that is, the algorithms averages
predictions over many individual trees. The individual trees are built on bootstrap samples rather
than on the original sample. This is called bootstrap aggregating or simply bagging, and reduces
over-fitting. The algorithm is as follows:

for i← 1 to B do
Draw a bootstrap sample of size N from the training data;
while node size != minimum node size do

randomly select a subset of m predictor variables from total p;
for j ← 1 to m do

if j-th predictor optimizes splitting criterion then
split internal node into two child nodes;
break;

end

end

end

end
return the ensemble tree of all B sub-trees generated in the outer for loop;

Algorithm 1: Random Forest Algorithm

Individual decision trees are easily interpretable. This interpretability is lost in Random Forests
because many decision trees are aggregated. However, in exchange, Random Forests perform often
much better on prediction tasks.

The Random Forest algorithm gives a more accurate estimate of the error rate, compared with
decision trees. More specifically, the error rate has been mathematically proven to always converge
as the number of trees increases [Breiman, 2001].

3

The error of the Random Forest is approximated by the out-of-bag error during the training
process. Each tree is built on a different bootstrap sample. Each bootstrap sample by random chance
leaves out about 1

3 of the observations. These left-out observations for a given tree are referred to
as the OOB sample. Finding parameters that would produce a low out-of-bag error is often a key
consideration in model selection and parameter tuning. Note that in the Random Forest algorithm,
the size of the subset of predictor variables, m, is crucial to controlling the final depth of the trees.
Hence it is a parameter that needs to be tuned during model selection, which will be discussed in
the examples later.

In order to gain some insight in the complex model, the so-called variable importance of
each variable is calculated. Variable importance is calculated by adding up the improvement in the
objective function given in the splitting criterion over all internal nodes of a tree and across all trees
in the forest, separately for each predictor variable. In the Stata implementation of Random Forest,
the variable importance score is normalized by dividing all scores over the maximum score: The
importance of the most importance variable is always 100%.

4 Stata Syntax

The Stata syntax to fit a Random Forest model is:

rforest depvar indepvars [if] [in] , [options]

with the following post-estimation command:

predict newvar | varlist | stub* [if] [in] , [pr]

5 Example: Credit Card Default

Yeh and Lien [2009] and Dheeru and Karra Taniskidou [2017] investigated the predictive accuracy of
the probability of default of credit card clients. There are a total of 30,000 observations, 1 response
variable, 22 explanatory variables, and no missing values. The response variable is a binary variable
that encodes whether the card holder will default on his/her debt, with 0 encoded as “no default”
and 1 encoded as “default”. 10 of the 22 explanatory variables are categorical variables containing
information such as gender, education, marital status, and whether past payments have been made
on time or delayed. The remaining 12 continuous explanatory variables contain information on the
monthly bill amount and payment amount over six months. For a complete list of variables, please
refer to Appendix A.

In this example we will investigate what are the predominant factors that affect credit card default
prediction accuracy, as well as contrast the prediction accuracy obtained using both Random Forest
and logistic regression.

5.1 Model Training and Parameter Tuning

To start the model training process, the data are arranged in random sort order. When the data
are split into training and test data, random sort order ensures that the training data are random
as well. To allow for reproducible results, a seed value is set. Then the data set is split into two
subsets: 50% used for training and 50% used for testing (validation). In small data sets a 50-50 split
may reduce the size of the training data too much; for this relatively large data set a 50-50 split is
not problematic. The randomization process mentioned previously ensures that the training data
contains observations belonging to all available classes, so as long as the class probabilities are not
heavily imbalanced. Additionally, it removes the model’s potential dependency on the ordering of
observations relative to the test data. Finally, since the variable for marital status uses values 0, 1, 2, 3

4

to encode un-ordered categorical information, we need to create 4 new binary indicator variables for
each marital status using the command tab marriage, gen(marriage enum). Creating the fourth
indicator variable is redundant, but this does not matter to tree-based algorithms like Random
Forest.

Next, the hyper-parameters are tuned to find the model with the highest testing accuracy. Specif-
ically, the number of iterations (i.e. number of sub-trees) and number of variables to randomly
investigate at each split, numvars, are tuned. The following code segment iteratively calculates the
out-of-bag prediction accuracy as a function of the number of iterations and numvars. The number
of iterations starts at 10 and is incremented by 5 every time until it reaches 500. We will use both
OOB Error (tested against training data subsets that are not included in sub-tree construction) and
validation error (tested against the test data) in order to determine the best possible model.

Usually, tuning parameters in statistical learning models requires a grid search, i.e. an exhaustive
search on a user-specified subspace of hyper-parameter values. In this case, however, since Random
Forest OOB error rates converge after the number of iterations get large enough, we simply need
to set the iterations to a value large enough for convergence to have occurred prior to tuning the
numvars parameter.

To illustrate how the OOB error and validation error have similar trends as the number of
iterations grow, the Random Forest function is iteratively called. The number of iterations variable
is initialized to 10 and increments by 5 per function call until it reaches 500. Finally, the trends
of OOB error and validation error can be visualized by plotting those values against the number of
iterations, as shown in Figure 3.

. import delimited using "default of credit card clients", varnames(2)
(25 vars, 30,000 obs)

. label define marriage_label 0 missing 1 married 2 single 3 other

. label values marriage marriage_label

. tab marriage, gen(marriage_enum)

MARRIAGE Freq. Percent Cum.

missing 54 0.18 0.18
married 13,659 45.53 45.71
single 15,964 53.21 98.92
other 323 1.08 100.00

Total 30,000 100.00

.

. set seed 201807

. gen u=uniform()

. sort u, stable

The stable option ensures that the result replicates even if there are ties on the sort variable.
The number of variables is investigated below; for simplicity we set numvars(1) here.

. // figure out how large the value of iterations need to be

. gen out_of_bag_error1 = .
(30,000 missing values generated)

. gen validation_error = .
(30,000 missing values generated)

. gen iter1 = .
(30,000 missing values generated)

. local j = 0

. forvalues i = 10(5)500 {
2. local j = `j´ + 1
3.

. rforest defaultpaymentnextmonth limit_bal sex education marriage_enum* ag
> e pay* bill* in 1/15000, type(class) iter(`i´) numvars(1)
4. qui replace iter1 = `i´ in `j´

5

.1
9

.2
.2

1
.2

2
.2

3

0 100 200 300 400 500
Iterations

Out of Bag Error Validation Error

Figure 3: Out of Bag Error and Validation Error vs. Iterations Plot

5. qui replace out_of_bag_error1 = `e(OOB_Error)´ in `j´
6. predict p in 15001/30000
7. qui replace validation_error = `e(error_rate)´ in `j´
8. drop p
9. }

.

. label var out_of_bag_error1 "Out of Bag Error"

. label var iter1 "Iterations"

. label var validation_error "Validation Error"

. scatter out_of_bag_error1 iter1, mcolor(blue) msize(tiny) || scatter validati
> on_error iter1, mcolor(red) msize(tiny)

We can see from Figure 3 generated by the above code block that both the OOB error and the
validation error stabilize around 19%. Hence fixing the number of iterations at 500 is a good choice.

Next we can tune the hyper-parameter numvars.

. gen oob_error = .
(30,000 missing values generated)

. gen nvars = .
(30,000 missing values generated)

. gen val_error = .
(30,000 missing values generated)

. local j = 0

. forvalues i = 1(1)26{
2. local j = `j´ + 1
3. rforest defaultpaymentnextmonth limit_bal sex ///

> education marriage_enum* age pay* bill* in 1/15000, type(class) ///

6

.1
82

.1
84

.1
86

.1
88

.1
9

.1
92

0 5 10 15 20 25
Number of Variables Randomly Selected at Each Split

Out of Bag Error Validation Error

Figure 4: Out of Bag Error and Validation Error vs. Number of Variables Plot

> iter(500) numvars(`i´)
4. qui replace nvars = `i´ in `j´
5. qui replace oob_error = `e(OOB_Error)´ in `j´
6. predict p in 15001/30000
7. qui replace val_error = `e(error_rate)´ in `j´
8. drop p
9. }

. label var oob_error "Out of Bag Error"

. label var val_error "Validation Error"

. label var nvars "Number of Variables Randomly Selected at Each Split"

. scatter oob_error nvars, mcolor(blue) msize(tiny) || ///
> scatter val_error nvars, mcolor(red) msize(tiny)

We can see for what number of variables the minimum error occurs in Figure 4. The following code
automates finding the minimum error and the corresponding number of variables. (This code uses
frames and requires Stata 16).

. frame put val_error nvars, into(mydata)

. frame mydata {

. sort val_error, stable

. local min_val_err = val_error[1]

. local min_nvars = nvars[1]

. }

. frame drop mydata

. di "Minimum Error: `min_val_err´; Corresponding number of variables `min_nvars
> ´"
Minimum Error: 0.1824; Corresponding number of variables 18

We can see that at numvars = 18, we get the lowest validation error at 0.1824. Hence we will use

7

numvars = 18 for our final model.
In principle, the random forest algorithm can output an OOB error at each iteration. However,

the WEKA implementation of Random Forest used for the Stata plugin does not output running
calculations of OOB error as the algorithm runs and instead only outputs one final OOB error for
the total number of iterations. This means that tuning the iterations parameter requires running the
Random Forest algorithm k times for every value of iterations = k. In order to make this process
efficient, it is best to set min and max values and a reasonable increment for us to be able to see the
trend of the change of OOB error over increasing iterations.

5.2 Final Model and Interpretation of Results

As shown in the previous section, we have set the values of hyper-parameters to be iterations = 500

and numvars = 18. Having reached convergence after 500 iterations, we are free to set the number
of iterations even higher. Out of an abundance of caution we set iterations = 1000. The following
code block gives the final model and prediction error.

. // final model: numvars = 18, iter = 1000

. rforest defaultpaymentnextmonth limit_bal sex education marriage_enum* age pay
> * bill* in 1/15000, type(class) iter(1000) numvars(18)

. di e(OOB_Error)

.18666667

. predict prf in 15001/30000

. di e(error_rate)

.18253333

The final out-of-bag error is 18.25%, which is larger than the actual prediction error, which is
18.24%, calculated over 15,000 test observations. We can see from both Figure 3 and Figure 4
that the out-of-bag error and validation error have the same pattern when plotted against the two
hyper-parameters, iterations and number of variables.

We also would like to ascertain which factors are most important in the prediction process.
Random forests are black-boxes in that they don’t offer insight in how the predictions is accom-
plished. Variable importance scores of each predictor provide some limited insight. The following
code segment plots the variable importance:

. // variable importance plot

. matrix importance = e(importance)

. svmat importance

. gen importid=""
(30,000 missing values generated)

.

. local mynames : rownames importance

. local k : word count `mynames´

. if `k´>_N {

. set obs `k´

. }

. forvalues i = 1(1)`k´ {
2. local aword : word `i´ of `mynames´
3. local alabel : variable label `aword´
4. if ("`alabel´"!="") qui replace importid= "`alabel´" in `i´
5. else qui replace importid= "`aword´" in `i´
6. }

.

. graph hbar (mean) importance, over(importid, sort(1) label(labsize(2))) ///
> ytitle(Importance)

We can see from Figure 5 that the top 5 most important predictors are basic demographic and

8

0 .2 .4 .6 .8 1
Importance

SEX
marriage==married

LIMIT_BAL
EDUCATION

marriage==single
AGE

PAY_0
PAY_2

PAY_AMT1
PAY_3
PAY_4
PAY_6
PAY_5

PAY_AMT2
PAY_AMT3

marriage==missing
PAY_AMT4
PAY_AMT5
PAY_AMT6
BILL_AMT1

marriage==other
BILL_AMT2
BILL_AMT4
BILL_AMT3
BILL_AMT5
BILL_AMT6

Figure 5: Importance Score of Predictor Variables

background information such as gender, education, and marital status (“married” and “single”) as
well as the monthly spending limit (“limit bal”). We can also see that none of the variables encoding
monthly bill amounts (bill amt) is particularly important, comparing with the rest of the predictors.
Surprisingly, however, the amount of monthly spending limit (limit bal) is the third most important
predictor in the Random Forest model. We can overlay two histograms of the monthly spending
limit to obtain more insights on how this variable affects the response variable:

. twoway (hist limit_bal if defaultpaymentnextmonth == 0) (hist limit_bal if def
> aultpaymentnextmonth == 1, fcolor(none) lcolor(black)), legend(order(1 "no de
> fault" 2 "default"))

We can see from the histograms in Figure 6 that card holders who default on their debt generally
have a lower monthly spending limit than those who do not default. Variable importance measures
the contribution of an X-variable to the model but depends on the set of X-variables. Another
X-variable correlated with the first would rise in importance if the first X-variable were excluded.

5.3 Comparison with Logistic Regression

Alternatively, credit default can be modeled using logistic regression. The following code returns
the prediction accuracy of logistic regression, using the same set of predictor variables and the same
train/test split:

. logistic defaultpaymentnextmonth limit_bal sex education marriage_enum* age p
> ay* bill* in 1/15000
note: marriage_enum4 omitted because of collinearity

Logistic regression Number of obs = 15,000
LR chi2(25) = 1910.25

9

0
2.

0e
-0

6
4.

0e
-0

6
6.

0e
-0

6
8.

0e
-0

6
D

en
si

ty

0 200000 400000 600000 800000 1000000
LIMIT_BAL

no default default

Figure 6: Histograms of Monthly Spending Limit

Prob > chi2 = 0.0000
Log likelihood = -6962.3913 Pseudo R2 = 0.1206

defaultpaym~h Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

limit_bal .9999994 2.20e-07 -2.79 0.005 .999999 .9999998
sex .8492577 .0368609 -3.76 0.000 .7799994 .9246657

education .9141707 .027126 -3.02 0.002 .8625212 .968913
marriage_en~1 .417391 .3057084 -1.19 0.233 .0993346 1.753824
marriage_en~2 1.003318 .1921736 0.02 0.986 .6892883 1.460414
marriage_en~3 .8158847 .1579004 -1.05 0.293 .5583331 1.192241
marriage_en~4 1 (omitted)

age 1.008542 .0025965 3.30 0.001 1.003466 1.013644
pay_0 1.803168 .0448785 23.69 0.000 1.717319 1.893309
pay_2 1.065803 .030625 2.22 0.027 1.007438 1.127549
pay_3 1.034829 .0336037 1.05 0.292 .9710189 1.102832
pay_4 1.045964 .037159 1.26 0.206 .9756117 1.12139
pay_5 1.065612 .0404813 1.67 0.094 .9891523 1.147983
pay_6 .9714182 .0303388 -0.93 0.353 .9137387 1.032739

pay_amt1 .999986 3.23e-06 -4.35 0.000 .9999796 .9999923
pay_amt2 .9999883 2.90e-06 -4.06 0.000 .9999826 .9999939
pay_amt3 .9999947 2.59e-06 -2.03 0.042 .9999897 .9999998
pay_amt4 .999994 2.51e-06 -2.41 0.016 .999989 .9999989
pay_amt5 .9999973 2.61e-06 -1.03 0.304 .9999922 1.000002
pay_amt6 .9999966 1.94e-06 -1.76 0.079 .9999928 1

bill_amt1 .9999938 1.66e-06 -3.73 0.000 .9999906 .9999971
bill_amt2 1.000001 2.17e-06 0.60 0.549 .999997 1.000006
bill_amt3 1.000003 1.85e-06 1.36 0.173 .9999989 1.000006
bill_amt4 .9999999 1.93e-06 -0.05 0.959 .9999961 1.000004
bill_amt5 1.000005 2.09e-06 2.20 0.028 1.000001 1.000009
bill_amt6 .9999979 1.59e-06 -1.33 0.184 .9999948 1.000001

_cons .4392684 .1048452 -3.45 0.001 .2751464 .7012873

10

Note: _cons estimates baseline odds.
Note: 3 failures and 0 successes completely determined.

.

. predict plogit in 15001/30000
(option pr assumed; Pr(defaultpaymentnextmonth))
(15,000 missing values generated)

. replace plogit = 0 if plogit <= 0.5 & plogit != .
(13,896 real changes made)

. replace plogit = 1 if plogit > 0.5 & plogit != .
(1,104 real changes made)

. gen error = plogit != defaultpaymentnextmonth

. sum error in 15001/30000

Variable Obs Mean Std. Dev. Min Max

error 15,000 .1886 .3912036 0 1

The prediction error obtained using logistic regression is 18.86%, comparing with the best-so-far
error rate that we have from Random Forest, which is 18.25%. The difference in error rate is small
but might still be meaningful to prevent credit card defaults.

6 Example: Online News Popularity

Fernandes et al. [2015] and Dheeru and Karra Taniskidou [2017] investigated the popularity of online
news.2 The data were originally presented at a Portuguese Conference on Artificial Intelligence in
2015. There are a total of 39,644 observations, 1 response variable, and 58 explanatory variables.
For this problem, we are interested in the log-scaled number of “shares” an online article obtains
based on various nominal and continuous attributes such as whether the article was published on a
weekend, whether certain keywords are present, number of images in the article, and etc. For a full
list of variable names and descriptions, please refer to Appendix B.

6.1 Model Training and Parameter Tuning

First we need to randomize the data like we did for the previous classification example. Then
generate a new variable for log-scaled number of shares:

. import delimited OnlineNewsPopularity.csv
(61 vars, 39,644 obs)

. set seed 201807

. gen u = uniform()

. sort u, stable

. gen logShares = ln(shares)

We will use a 50-50 split to partition the data into training and testing set as in the previous
example. To tune the hyper-parameters numvars and iterations, we employ the same technique
as in the previous example where we fix the value of one hyper-parameter when tuning the other.
This is a viable parameter optimization method due to the fact that error rate for Random Forest
converges when the number of iterations is large enough. Essentially, our goal is to set a reasonably
large number of iterations where the out-of-bag and validation errors converge so that when we tune
the number of randomly selected variables, we can ascertain that the errors differ due to the value
of numvars and not due to iterations. We will again start with iterations = 10 and increase
it by increments of 5 until iterations = 100, which, in order to run this data set on a CPU, is

2To access the exact data set used in this example, please visit
https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity

11

approximately he highest possible value due to constraints on runtime memory. At the end of the
loop, we plot the out-of-bag errors and the actual RMSE values validated using the test data against
the number of iterations.

. gen out_of_bag_error1 = .
(39,644 missing values generated)

. gen validation_error = .
(39,644 missing values generated)

. gen iter1 = .
(39,644 missing values generated)

. local j = 0

. forvalues i = 10(5)100 {
2. local j = `j´ + 1
3. rforest logShares n_* average_* num_* ///

> data_* kw_* self_* weekday_* lda_* global_* ///
> is_weekend rate_* min_* max_* avg_* title_* abs_* in 1/19822, ///
> type(reg) iter(`i´) numvars(1)
4. qui replace iter1 = `i´ in `j´
5. qui replace out_of_bag_error1 = `e(OOB_Error)´ in `j´
6. predict p in 19823/39644
7. qui replace validation_error = `e(RMSE)´ in `j´
8. drop p
9. }

. label var out_of_bag_error1 "Out of Bag Error"

. label var iter1 "Iterations"

. label var validation_error "Validation RMSE"

. scatter out_of_bag_error1 iter1, mcolor(blue) msize(tiny) || ///
> scatter validation_error iter1, mcolor(red) msize(tiny)

We can see from the graph that the OOB error and validation RMSE start to converge at around
80 iterations. We get the lowest value for both errors at 100 iterations, which will be used for the
final model. Now we can tune the other hyper-parameter, numvars, to see which one gives the lowest
validation RMSE.

. gen oob_error = .
(39,644 missing values generated)

. gen nvars = .
(39,644 missing values generated)

. gen val_error = .
(39,644 missing values generated)

. local j = 0

. forvalues i = 1(1)58{
2. local j = `j´ + 1
3. rforest logShares n_* average_* num_* ///

> data_* kw_* self_* weekday_* lda_* global_* ///
> is_weekend rate_* min_* max_* avg_* title_* abs_* in 1/19822, ///
> type(reg) iter(100) numvars(`i´)
4. qui replace nvars = `i´ in `j´
5. qui replace oob_error = `e(OOB_Error)´ in `j´
6. predict p in 19823/39644
7. qui replace val_error = `e(RMSE)´ in `j´
8. drop p
9. }

. label var oob_error "Out of Bag Error"

. label var val_error "Validation RMSE"

. label var nvars "Number of Variables Randomly Selected at Each Split"

. scatter oob_error nvars, mcolor(blue) msize(tiny) || ///
> scatter val_error nvars, mcolor(red) msize(tiny)

Again, we automate finding the minimum error:

12

.6
5

.7
.7

5
.8

.8
5

.9

0 20 40 60 80 100
Iterations

Out of Bag Error Validation RMSE

Figure 7: Out of Bag Error and Validation RMSE vs. Iterations Plot

13

.6
5

.7
.7

5
.8

.8
5

0 20 40 60
Number of Variables Randomly Selected at Each Split

Out of Bag Error Validation RMSE

Figure 8: Out of Bag Error and Validation Error vs. Number of Variables Plot

14

. cap frame drop mydata2

. // only run when tuning is run

. frame put val_error nvars, into(mydata2)

. frame mydata2 {

. sort val_error, stable

. local min_val_err = val_error[1]

. local min_nvars = nvars[1]

. }

. frame drop mydata2

. di "Minimum Error: `min_val_err´; Corresponding number of variables `min_nvars
> ´"
Minimum Error: 0.8570; Corresponding number of variables 6

For numvars = 6, we get the lowest validation error at 0.8570. Hence we will use numvars = 6
for our final model. which will be set for our final model. For this data set, the model is fairly robust
to changes in the number of variables, numvars, and numvars = 6 only has a slight edge comparing
with other values. This might not always be the case.

6.2 Final Model and Interpretation of Results

The final model has hyper-parameter values numvars = 6 and iterations = 100.

. rforest logShares n_* average_* num_* ///
> data_* kw_* self_* weekday_* lda_* global_* ///
> is_weekend rate_* min_* max_* avg_* title_* abs_* in 1/19822, ///
> type(reg) iter(100) numvars(6)

. ereturn list OOB_Error
scalar e(OOB_Error)= .6436290493772533

. predict prf in 19823/39644

. ereturn list RMSE
scalar e(RMSE) = .8570009318991625

The final out-of-bag error is 0.6436. This is somewhat lower than the RMSE calculated against
the test data, 0.8570. To learn which variables affect the prediction accuracy, we can generate
a variable importance plot using the same code segment as the previous classification example.
For readability, only variables with an importance score at least 40% as large as that of the most
important variable are shown.

. // variable importance plot

. matrix importance2 = e(importance)

. svmat importance2

. gen importid2=""
(39,644 missing values generated)

.

. local mynames : rownames importance2

. local k : word count `mynames´

. if `k´>_N {

. set obs `k´

. }

. forvalues i = 1(1)`k´ {
2. local aword : word `i´ of `mynames´
3. local alabel : variable label `aword´
4. if ("`alabel´"!="") qui replace importid2= "`alabel´" in `i´
5. else qui replace importid2= "`aword´" in `i´
6. }

.

. graph hbar (mean) importance2 if importance2>.4, over(importid2, sort(1) ///
> label(labsize(2))) ytitle(Importance)

15

0 .2 .4 .6 .8 1
Importance

 is_weekend

 data_channel_is_world

 kw_avg_avg

 data_channel_is_entertainment

 weekday_is_saturday

 self_reference_avg_sharess

 kw_max_avg

 self_reference_min_shares

 kw_min_avg

 weekday_is_sunday

 LDA_02

 data_channel_is_socmed

 self_reference_max_shares

 data_channel_is_tech

 title_sentiment_polarity

 LDA_03

 global_subjectivity

 LDA_04

 avg_positive_polarity

 abs_title_sentiment_polarity

 LDA_01

 avg_negative_polarity

Figure 9: Importance Score of Predictor Variables

Whether or not the article was published on a weekend is the most important predictor. Other
important explanatory variables include news channel types and the number of keywords. To obtain
more insight on how the log-scaled number of article shares is related to whether the article was
published on a weekend, we use the following histogram to illustrate the relationship:

. twoway (hist logShares if is_weekend == 0) ///
> (hist logShares if is_weekend == 1, fcolor(none) lcolor(black)), ///
> legend(order(1 "weekday" 2 "weekend"))

The empirical distributions of log number of shares differ for weekdays vs. weekends. This clear
shift in empirical distribution helps to explain why the is weekend explanatory variable was the
most important in the model.

6.3 Comparison with Linear Regression

The following code block fits a linear regression model over the same set of dependent and indepen-
dent variables, using the same train/test split as shown in the Random Forest model:

. regress logShares n_* average_* num_* ///
> data_* kw_* self_* weekday_* lda_* global_* ///
> is_weekend rate_* min_* max_* avg_* title_* abs_* in 1/19822
note: weekday_is_friday omitted because of collinearity
note: weekday_is_saturday omitted because of collinearity
note: lda_01 omitted because of collinearity

Source SS df MS Number of obs = 19,822
F(55, 19766) = 54.22

Model 2257.55675 55 41.0464864 Prob > F = 0.0000
Residual 14963.6848 19,766 .757041628 R-squared = 0.1311

Adj R-squared = 0.1287

16

0
.2

.4
.6

.8
D

en
si

ty

0 5 10 15
logShares

weekday weekend

Figure 10: Histograms of Log-scaled Number of Shares

Total 17221.2416 19,821 .86883818 Root MSE = .87008

logShares Coef. Std. Err. t P>|t| [95% Conf. Interval]

n_tokens_ti~e .0075709 .0030727 2.46 0.014 .0015482 .0135937
n_tokens_co~t .0000896 .0000241 3.71 0.000 .0000422 .0001369
n_unique_to~s .3790955 .2060237 1.84 0.066 -.0247283 .7829193
n_non_stop~ds .8239396 .8831114 0.93 0.351 -.9070329 2.554912
n_non_stop~ns -.3543805 .1750817 -2.02 0.043 -.6975553 -.0112057
average_tok~h -.093957 .0258385 -3.64 0.000 -.1446027 -.0433113

num_hrefs .0036305 .000706 5.14 0.000 .0022467 .0050144
num_self_hr~s -.0073054 .0018167 -4.02 0.000 -.0108662 -.0037445

num_imgs .0015477 .0009738 1.59 0.112 -.0003609 .0034564
num_videos .0017068 .0017468 0.98 0.329 -.001717 .0051307

num_keywords .005025 .00398 1.26 0.207 -.0027762 .0128261
data_channe~e -.1193581 .0422913 -2.82 0.005 -.2022525 -.0364636
data_channe~t -.2102381 .0273279 -7.69 0.000 -.263803 -.1566732
data_channe~s -.1828533 .0412715 -4.43 0.000 -.2637489 -.1019577
data_chann~ed .1076191 .039703 2.71 0.007 .0297978 .1854404
data_channe~h .0696772 .0399362 1.74 0.081 -.0086011 .1479554
data_chann~ld -.0547657 .0402811 -1.36 0.174 -.13372 .0241886

kw_min_min .0008308 .0001722 4.82 0.000 .0004933 .0011684
kw_max_min 1.56e-06 6.26e-06 0.25 0.803 -.0000107 .0000138
kw_avg_min 9.84e-06 .0000391 0.25 0.802 -.0000669 .0000866
kw_min_max -2.24e-07 1.26e-07 -1.78 0.076 -4.72e-07 2.33e-08
kw_max_max 3.50e-08 6.16e-08 0.57 0.570 -8.57e-08 1.56e-07
kw_avg_max -2.92e-07 8.87e-08 -3.30 0.001 -4.66e-07 -1.18e-07
kw_min_avg -.000054 8.12e-06 -6.65 0.000 -.0000699 -.0000381
kw_max_avg -.0000451 2.75e-06 -16.40 0.000 -.0000505 -.0000397
kw_avg_avg .0003413 .0000155 22.04 0.000 .000311 .0003717

self~n_shares 2.31e-07 7.78e-07 0.30 0.767 -1.30e-06 1.76e-06
self~x_shares -3.93e-07 4.39e-07 -0.90 0.370 -1.25e-06 4.67e-07

17

self_refer~ss 2.48e-06 1.10e-06 2.26 0.024 3.28e-07 4.64e-06
weekday~onday -.0140188 .0222015 -0.63 0.528 -.0575357 .029498
weekda~uesday -.0813934 .0217944 -3.73 0.000 -.1241122 -.0386746
weekda~nesday -.074833 .021556 -3.47 0.001 -.1170846 -.0325814
weekday~rsday -.0582327 .0218933 -2.66 0.008 -.1011453 -.01532
weekday_~iday 0 (omitted)
weekday_~rday 0 (omitted)
weekday~unday .0162751 .0340215 0.48 0.632 -.0504099 .0829602

lda_00 .3737897 .0569696 6.56 0.000 .2621246 .4854548
lda_01 0 (omitted)
lda_02 -.1065375 .0557763 -1.91 0.056 -.2158638 .0027888
lda_03 .0406036 .0395897 1.03 0.305 -.0369955 .1182027
lda_04 .1717159 .0542922 3.16 0.002 .0652987 .2781332

global_subj~y .3763543 .0916398 4.11 0.000 .1967326 .5559761
global_sent~y .0136587 .1804347 0.08 0.940 -.3400085 .367326
g~itive_words -.8139646 .7785847 -1.05 0.296 -2.340056 .7121268
g~ative_words .1631068 1.528481 0.11 0.915 -2.832844 3.159058

is_weekend .2033014 .0296855 6.85 0.000 .1451154 .2614874
rate_positi~s -.4930114 .872509 -0.57 0.572 -2.203202 1.21718
rate_negati~s -.6051804 .8763014 -0.69 0.490 -2.322805 1.112444
min_positiv~y -.4281182 .1223362 -3.50 0.000 -.6679075 -.188329
min_negativ~y -.0100648 .049342 -0.20 0.838 -.1067792 .0866497
max_positiv~y -.0575846 .0461163 -1.25 0.212 -.1479764 .0328072
max_negativ~y .0240158 .111635 0.22 0.830 -.1947981 .2428298
avg_positiv~y .0174634 .147251 0.12 0.906 -.2711609 .3060877
avg_negativ~y -.076345 .1351286 -0.56 0.572 -.3412084 .1885185
title_subje~y .0581885 .0293427 1.98 0.047 .0006744 .1157026
title_senti~y .0597084 .0265768 2.25 0.025 .0076156 .1118011
abs_titl~vity .1600177 .0391203 4.09 0.000 .0833386 .2366968
abs_titl~rity .0400174 .0419938 0.95 0.341 -.0422941 .1223288

_cons 6.552971 .088802 73.79 0.000 6.378912 6.72703

. predict pregress in 19823/39644
(option xb assumed; fitted values)
(19,822 missing values generated)

. ereturn list rmse
scalar e(rmse) = .8700813917009586

The value of e(rmse) displayed is the RMSE calculated over the training data. To compare
the linear model with Random Forest, we need to calculate the RMSE over the test data using the
following commands:

. gen diff_sqr= (logShares - pregress)^2
(19,822 missing values generated)

. summarize diff_sqr

Variable Obs Mean Std. Dev. Min Max

diff_sqr 19,822 40.90379 5651.692 1.02e-09 795706

We can see from the output that the mean squared error is 40.90379, which means the RMSE is
equal to

√
40.90379 ≈ 6.3956, which is much higher than the RMSE fitted over the training data.

Comparing with the testing RMSE obtained from the Random Forest model, the testing RMSE for
the linear model is also much higher. This is a strong indication that for this example, Random
Forest out-performs linear regression.

7 Discussion

The classification and regression examples have illustrated that Random Forest models usually have
higher prediction accuracy than corresponding parametric models such as logistic regression and
linear regression. Typically, greater gains in model performance are available for multi-class (multi-
nomial) outcomes and regression than binary outcomes. Misclassification is a fairly insensitive

18

performance criterion. When an improved algorithm changes the estimated classification probabili-
ties for two classes from p1 = 0.10 and p2 = 0.90 to p1 = 0.40 and p2 = 0.60 for an observation, the
resulting classification remains the same. An improvement over logistic regression with its linearity
assumption can either come from nonlinearities or from interactions. Additionally, the scope of
improvement is reduced when many of the variables are indicator variables: nonlinearities do not
exist for indicator variables. In our experience, many of the variables in social sciences are indicator
variables. For example, Ing et al. [2019] found that support vector machines did not improve over
logistic regression. Similarly, in our classification example the improvement or Random Forest over
logistic regression was minor.

In the examples, the values of hyper-parameters were determined based on which value gave the
lowest testing error. In practice, when there are not enough observations to allow for a train/test
split, the OOB error can be used instead. As previously demonstrated, the OOB error is a close
estimation of the actual testing error and can be used on its own as a criterion for parameter tuning.

While the two examples primarily focused on the typical case of tuning iterations and numvars,
depending on the data set and software constraints, other hyper-parameters such as max tree depth
and minimum size of leaf nodes could be taken into consideration during parameter tuning. For
instance, setting the max tree depth to a fixed value may become necessary on a machine with
limited RAM.

8 Acknowledgment

The software development in Stata was built on top of the WEKA Java implementation, developed
by the University of Waikato. We are grateful for Eibe Frank for allowing us to use the WEKA
implementation for the Stata plugin.

This research was supported by the Social Sciences and Humanities Research Council of Canada
(SSHRC # 435-2013-0128).

19

References

Atin Basuchoudhary, James T. Bang, and Tinni Sen. Machine-learning Techniques in Economics:
New Tools for Predicting Economic Growth. Springer International Publishing, New York, 2017.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Dua Dheeru and Efi Karra Taniskidou. Default of credit card dataset, 2017. URL
https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset.

Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. A proactive intelligent decision support system
for predicting the popularity of online news. In F. Pereira, P. Machado, E. Costa, and A. Cardoso,
editors, Proceedings of the 17th Portuguese Conference on Artificial Intelligence, pages 535–546,
New York, 2015. Springer. ISBN 978-3-319-23485-4.

Eibe Frank, MA Hall, IH Witten, and Chris J. Pal. The WEKA workbench online appendix. In
Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington,
Massachusetts, 4th edition, 2016.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten.
The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):
10–18, 2009.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on Document
Analysis and Recognition, volume 1, pages 278–282, Piscataway, NJ, August 1995. IEEE. ISBN
0-8186-7128-9. 10.1109/ICDAR.1995.598929.

Edsel Ing, Wanhua Su, Matthias Schonlau, and Nurhan Torun. SVMs and logistic regression to
predict temporal artery biopsy outcomes. Canadian Journal of Ophthalmology, 54:116––118, 2019.
online first https://www.sciencedirect.com/science/article/pii/S000841821830228X.

Xun Liu, Daji Wu, Gebreab K Zewdie, Lakitha Wijerante, Christopher I Timms, Alexander
Riley, Estelle Levetin, and David J Lary. Using machine learning to estimate atmospheric
Ambrosia pollen concentrations in Tulsa, OK. Environmental Health Insights, 11:1–10, 2017.
10.1177/1178630217699399.

Rickard Nyman and Paul Ormerod. Predicting Economic Recessions Using Machine Learning Al-
gorithms. arXiv preprint arXiv:1701.01428, 2017.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3–55, 2001.

I-Cheng Yeh and Che-Hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2):
2473–2480, 2009.

20

Appendix A Variable Names for Classification Example

The column names in this table are reproduced based on the original documentation on UCI Machine
Learning Repository’s website.

Variable Name Column Name
id row number

limit bal
Amount of the given credit (NT dollar):
it includes both the individual consumer
credit and his/her family (supplementary) credit.

sex Gender of the card holder. 1 = male, 2 = female

education
Education (1 = graduate school; 2 = university;
3 = high school; 4 = others).

marriage Marital status (1 = married; 2 = single; 3 = others).
age Age of card holder

pay 0
The repayment status in September, 2005
The value of the variable corresponds to
number of months delayed.

pay 2 The repayment status in August, 2005
pay 3 The repayment status in July, 2005
pay 4 The repayment status in June, 2005
pay 5 The repayment status in May, 2005
pay 6 The repayment status in April, 2005
bill amt1 Amount of bill statement in September, 2005
bill amt2 Amount of bill statement in August, 2005
bill amt3 Amount of bill statement in July, 2005
bill amt4 Amount of bill statement in June, 2005
bill amt5 Amount of bill statement in May, 2005
bill amt6 Amount of bill statement in April, 2005
pay amt1 Amount of previous payment in September, 2005
pay amt2 Amount of previous payment in August, 2005
pay amt3 Amount of previous payment in July, 2005
pay amt4 Amount of previous payment in June, 2005
pay amt5 Amount of previous payment in May, 2005
pay amt6 Amount of previous payment in April, 2005

defaultpaymentnextmonth
Whether the card holder defaults on his/her
payment next month; 0 = no, 1 = yes

marriage enum1
Marital status is none of ”married”, ”single”,
or ”other”; generated during data pre-processing

marriage enum2
Marital status = ”married”;
generated during data pre-processing

marriage enum3
Marital status = ”single”;
generated during data pre-processing

marriage enum4
Marital status = ”other”;
generated during data pre-processing

21

Appendix B Variable Names for Regression Example

The column names in this table are reproduced based on the original documentation on UCI Machine
Learning Repository’s website.

Variable Names Column Names
url URL of the article (non-predictive)

timedelta
Days between the article publication and the
dataset acquisition (non-predictive)

n tokens title Number of words in the title
n tokens content Number of words in the content
n unique tokens Rate of unique words in the content
n non stop words Rate of non-stop words in the content
n non stop unique tokens Rate of unique non-stop words in the content
num hrefs Number of links
num self hrefs Number of links to other articles published by Mashable
num imgs Number of images
num videos Number of videos
average token length Average length of the words in the content
num keywords Number of keywords in the metadata
data channel is lifestyle Is data channel ’Lifestyle’?
data channel is entertainment Is data channel ’Entertainment’?
data channel is bus Is data channel ’Business’?
data channel is socmed Is data channel ’Social Media’?
data channel is tech Is data channel ’Tech’?
data channel is world Is data channel ’World’?
kw min min Worst keyword (min. shares)
kw max min Worst keyword (max. shares)
kw avg min Worst keyword (avg. shares)
kw min max Best keyword (min. shares)
kw max max Best keyword (max. shares)
kw avg max Best keyword (avg. shares)
kw min avg Avg. keyword (min. shares)
kw max avg Avg. keyword (max. shares)
kw avg avg Avg. keyword (avg. shares)
self reference min shares Min. shares of referenced articles in Mashable
self reference max shares Max. shares of referenced articles in Mashable
self reference avg sharess Avg. shares of referenced articles in Mashable
weekday is monday Was the article published on a Monday?
weekday is tuesday Was the article published on a Tuesday?
weekday is wednesday Was the article published on a Wednesday?
weekday is thursday Was the article published on a Thursday?
weekday is friday Was the article published on a Friday?
weekday is saturday Was the article published on a Saturday?
weekday is sunday Was the article published on a Sunday?
is weekend Was the article published on the weekend?

22

Continued from last page

Variable Names Column Names
LDA 00 Closeness to LDA topic 0
LDA 01 Closeness to LDA topic 1
LDA 02 Closeness to LDA topic 2
LDA 03 Closeness to LDA topic 3
LDA 04 Closeness to LDA topic 4
global subjectivity Text subjectivity
global sentiment polarity Text sentiment polarity
global rate positive words Rate of positive words in the content
global rate negative words Rate of negative words in the content
rate positive words Rate of positive words among non-neutral tokens
rate negative words Rate of negative words among non-neutral tokens
avg positive polarity Avg. polarity of positive words
min positive polarity Min. polarity of positive words
max positive polarity Max. polarity of positive words
avg negative polarity Avg. polarity of negative words
min negative polarity Min. polarity of negative words
max negative polarity Max. polarity of negative words
title subjectivity Title subjectivity
title sentiment polarity Title polarity
abs title subjectivity Absolute subjectivity level
abs title sentiment polarity Absolute polarity level
shares Number of shares (target)

23

