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1 Introduction

Global optimization, that is the search for a global
extremum, is a problem commonly encountered in
practice. Sometimes it is extremely costly o eval-
uate a function at a design point z, as is the case
for example at Boeing:

“Designing helicopter blades io achieve
low vibration ig an extreme example of
& problem where it is prohibitively ex-
pensive to compute responses for large
numbers of design alternatives.” (Siam
News, Jan/Feb 1996)

In order to find the global minimum, one is then in-
terested in minimizing the total number of function
evaluations needed to do so. We propose here an
algorithm aimed at minimizing the total number
of function evaluations for finding the global ex-
tremum of a deterministic funciion. The amount
of computation that it takes to decide on design
points is not a concern.

‘With this objective in mind, we replace the un-
known function by a stochastic model estimated
from previous funciion evaluations. We then
choose design points based on the model, rather
than just on the last function evaluation.

The outline of this paper is as follows. In sec-
tion 2 we briefly discuss a common stochastic pro-
cess model used in the analysis of computer ex-
periments. Section 3 describes the minimization
algorithm that we employ. In Section 4 we illus-
trate the minimization algorithm by means of two
simple examples.
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2 A Stochastic Process Model

We will briefly review a common stochastic pro-
cess model used in the analysis of computer exper-
iments that will be needed later on.

The data from a computer experiment consist
of n vectors-of covariate values (or inputs) denoted
by X1,:..;x; ‘for the k covariates zy,...,z; as
specified by a particular experimental design. The
corresponding response values {(or outputs) are de-
noted ¥y = (y1,...,¥n)’. Then, following the ap-
proach of, e.g., Welch et al. (1992), the response is
treated as a realization of a stochastic process:

Y{x) =B+ Z(x),

where E(Z(x)) 0 and Cov(Z(w),Z(x)) =
o?R(w,x) for two inputs w and x. The corre-
lation function R(-,-} can be tuned io the data,

which for this paper is assumed to have the form:

k
R(w,x) = H exp(—6;|w; — z; %), (1)

F=1

where 6; > 0 and 0 < p; < 2. The p;’s can be in-
terpreted as smoothness parameters {smoother as
the p’s increase) which indicate the smoothness of
the response surface and the 8’s indicate how local
the predictor is (more local as the 8’s increase).

The best linear unbiased predictor of y at an
untried x can be shown to be:

#(x) = B+ (x)R™ Yy — 1), (2)
where r(x) is the vector of the correlations be-
tween x and each of the n design poinis, 5 is the
generalized least squares estimator of 5, R is the
correlation matrix with elements defined by (1)
and 1 is a vector of 1’s.

The MSE of the estimate can be derived as:

MSE[§(x)] =

b
z



The predictor in {2) has proven o be accurate
for numercus applications, see e.g. Currin et al.
{1991}, Sacks et al. (198%a), Sacks et al. (1989b),
Welch et al. {1992}.

3 Expected Improvement Al-
gorithm

In this section we give a heuristic aigorithm for a
sequential design strategy for detecting the global
minimum of a deterministic function. We will
call this algorithm the ezpected improvement algo-
rithm. We assume without loss of generality that
the extremum of interest is a minimum. A maxi-
mization problem can be easily turned into a min-
imization problem by multiplying the function by
(-1).

The expected improvement algorithm proceeds
in two steps:

1. First we sample n points of the true func-
tion in a space filling manner. Latin hyper-
cube sampling schemes are particularly suit-
able here.

2. We then proceed sequentially sampling one
point at a time. At each step we sample the
point with the greatest expected improve-
ment over the current minimal sampled func-
tion value. The derivation of the expected
improvement is given below.

After each sampling step the predictor is up-
dated, and the expected improvement is re-
calculated.

After some preliminaries, we will now define
the improvement I and derive the expected im-
provment E(I).

Suppose we have fitted the BLUP iin equation
{2) to the data accumulated at some stage. To
predict ¥'(x) at an untried x, we have §{x) with
a mean squared error given by (3). For notational
simplicity, we omit the dependence on x, and de-
note §(x) by i and the root mean squared error by
&. Next, we take the distribution of the unknown
Y =Y (x) as N(2,6%)

Definition: If the funciion is sampled at x o de-
termine y = y(x) then the improvement I over
Fmin, the minimal sampled funciion value so far,

is defined as

I = { fmx’n“‘y y<frm'ﬁ
o 1 9 otherwise

where fmin denoies the current minimal sampled
function value.

We can rewrite the improvement as

I = &( r,m'n'_z} z<f7’nim‘}>6
10 otherwise

where z = u and f! . = ”“'Z‘"

min
Using the assumed normal dlstnbutlon for the

unknown Y, in the case of & > 0 the expected
improvement is

e =¢ [ :“"<f,,,,,,- 2)$(2)dz
| o=tz min
= G| frmin®(frin) + { Ton }

= S hin®(fin) + S(Finin)]
= Uin - p2(Imn =By 4 sy(lmin = E

-0

fmm - )

4)
In the case of & = 0,-the improvement is zero

and consequently so is the expected improvement.
Hence, in summary

E() =

{ (fmin ..ﬁ)q;(i&»__&) +0~¢(Lm'.=_.l‘_) ? > g
(5)

Note that improvement iz nonnegative and
hence the expected improvement is nonnegative.

The expected improvement will tend to be large
at a point whose predicted value is very small or
where there is a lot of uncertainty associated with
the current predicted Y (x) at that point.

A practical problem, though, is finding the
global maximum of the expected improvement over
a continuous region. Currently, we start local
searches at each of the design points.

4 Examples

In this section, we demonsirate graphically the
performance of the expected improvement algo-
rithm by means of two relatively simple examples.
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The Branin function {Jones et al., 1993} is

5.1 5
flzy,29) = (22— mm? + —z - 6) +

10(1 - —827;) cos(zy)+10.  (6)

The z ranges are —5 < 21 < 10 and 0 < z; < 15.
This function is challenging as it has three global
minima. Because the function has only two z vari-
ables it is especially suitable for visualization.

Initially, we sample the function at 21 points
generated by a Maximin design within the class of
Latin Hypercubes (Welch, work in progress). We
then employ the expected improvement algorithm
outlined in section 2. The design of the initial
21 points (denoted by a dot) and the following
points resuliing from the sequential optimization
(denoted by their respective number) can be seen
in Figure 1.

We can see that following the initial design
points, sampled points cluster around the three
global optima. For this example we use a stopping Figure 1: Design and Sequential Minimization Design
criterion based on the size of the expected im- for the Branin Function. Sequential Minimization De-
provement relative to the current minimum. Work sign Points are Labelled in Order of Appearance.
on an aliernate stopping criterion is in progress.
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Figure 2: Two Dimensional Projections of the 51 Design Poinis and the Z8 Sequential Minimization
Design Points for the Hartman Function.
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The Hartman function (Térn and Zilinskas,
1987) is given as

f(ii;, .

. 725):

4
- Zc;ezp

=l

[ s 1
‘Zai;‘(iﬂj—z’u)zg (7)
i=1 |

where ¢;, pij and a;; are coefficients. They will
not be reproduced here due to space constrainis
(see Térn and Zilinskas, 1987). The z ranges are
0<z<lfori=1,...,6. For the initial design
we choose 51 points. Roughly speaking, we use
about 10 points for each active variable. Numbers
like 11, 21, 51 result in convenient design points,
but any other number could be chosen, too. We
then use the expected improvement algorithm to
determine the minimum. Two dimensional pro-
jections of the design including the design points
resulting from the minimization can be seen in
Figure 2 . We can see that the design clusters
around one single point which indeed is the mini-
mum. During the minimization, only 28 additional
points were sampled.
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