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Abstract

I discuss the hammock plot for visualizing categorical or mixed categorical/numeric
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where the lines are replaced by boxes (or plotting elements) and the width of the boxes
is proportional to the number of observations they represent. The paper also intro-
duces a modification to the hammock plot to avoid what Hoffman et al. termed the
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online.
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1 Introduction

Categorical variables are pervasive. Social scientists routinely collect data about gender,

education, race/ethnicity, all of which are categorical. Even income is often measured as a

categorical variable, each category corresponding to an income range. For survey research,

multiple choice questions, dichotomous questions, Likert scale questions, choose-all-that-

apply questions and matrix questions all lead to categorical variables.

Visualizing data is important during exploratory analysis. Univariate plot types are

plentiful and include barchart, histogram, box and whisker plots, pie chart, and many oth-

ers. Bivariate plots include scatter plots and stacked barcharts. Beyond two dimensions,

there are fewer options: for continuous variables there are the scatter plot matrix and par-

allel coordinate plots (Inselberg, 1985; Wegman, 1990); for categorical variables historically

the mosaic plot (Hartigan and Kleiner, 1981) was the main tool. However, even mosaic

plots cannot accommodate a mixture of categorical/ continuous variables. A work-around

is to bin the continuous variables to make them categorical.

In 2003, the hammock plot was introduced in a conference proceedings paper of the

American Statistical Association (Schonlau, 2003). The hammock plot is an alternative

plot for categorical data, and it also accommodates a mixture of categorical/ numeric data.

Section 2 describes the hammock plot and proposes an improvement that addresses the

so-called reverse line width illusion.

Much has happened in the 20 years since the hammock plot was first introduced. A

considerable number of closely related plots succeeded the hammock plot including the

parallel sets plot, the common angle plot, generalized parallel coordinate plot, and the

alluvial plot. All these plots have a common ancestor, the parallel coordinate plot. Section 3

reviews these plots in their historical order of appearance. Section 4 compares the plots in

terms of the shape and width of the boxes that connect adjacent variables. Section 5 shows

how the hammock plot can be used to gain insight into the Shakespeare data. Section 6

concludes with a discussion.
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2 The hammock plot

This section introduces the hammock plot; first a two-way hammock plot for two variables

and then a hammock plot for multiple variables. The two sub-sections that follow discuss

the so-called line width illusion and a remedy for the so-called reverse line width illusion.

The section concludes with a brief survey of implementations of the hammock plot.

Throughout this section, we illustrate the hammock plot with the asthma data (Mangione-

Smith et al., 2005). The asthma data were originally collected to determine whether an

intervention improved processes and outcomes of asthma care. The asthma data set here

(N=696) is used to illustrate the hammock plot; no medical conclusions are intended. Here,

we consider the variables number of hospitalizations, the number of comorbidities, gender

and group. The group variable specifies whether the person was a child, an adolescent or

an adult.

2.1 The two-way hammock plot

Figure 1 gives a hammock plot for two categorical variables, group (child/adolescent/adult)

and gender (female/male), in the asthma data. Like a parallel coordinate plot, the axes are

aligned parallel to one another. Categories of adjacent variables are connected by boxes.

(The boxes shown are parallelograms; I use the word boxes for simplicity). The width

of boxes is proportional to the number of observations. “Width” refers to the minimal

(orthogonal) distance between the two longer parallel lines. Choosing the minimal distance

rather than the vertical distance avoids the so-called line width illusion.

The categories within a variable are spread out along a vertical axis. Optionally, ham-

mock plots also display category labels. For example, in Figure 1 the variable “group” has

three labels “adult”, “adolescent”, and “child”. Optionally, a category is added for missing

values and is displayed at the bottom. We see, for example, that most of the adults are

female, whereas the gender ratio is more evenly matched for adolescents and children.

In summary, the hammock plot shows a graphical representation of the bivariate counts

between two categories of two (adjacent) variables. Zero counts are represented through

missing boxes. (For this plot, non-zero counts below 10 were increased to 10, because very
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Figure 1: A hammock plot of two categorical variables, group and gender.

thin lines are barely visible, depending on screen resolution). The strength of Hammock

plots lies in visualizing more than two variables. The next subsection turns to hammock

plots with multiple variables.

2.2 The multi-way hammock plot

Figure 2 shows the hammock plot for the asthma data for four variables. The two additional

variables are number of comorbidities and number of hospitalizations. Like a parallel

coordinate plot, this plot extends the two-way version by adding axes parallel to existing

axes. Figure 2 is highlighted by gender. As before, the hammock plot shows a graphical

representation of the bivariate counts between two categories of two adjacent variables. (As

before, for this plot, non-zero bivariate counts below 10 were increased to 10).

Figure 2 tells a story about the data: We knew already that most adults are females

and that group membership is missing for a small fraction. We learned this because group

4



child

adolescent

adult

0
1
2
3
4
5

20

0

1

2

3

4

5

6

7

female

male

missing

group comorbiditieshospitalizations gender

Figure 2: A hammock plot of the asthma data with multiple variables and space reserved

for missing values. The plot is highlighted by gender (male in red).

and gender were adjacent in Figure 1. Now, group and gender are no longer adjacent, but

highlighting gender allows us to gain the same information. Most males have 0 days of

hospitalization. The number of hospitalizations is generally between 0 and 5, though there

is one observation (or a small number of observations) with 20 days of hospitalization. This

person, a female adult, also has the largest number of comorbidities.

Alternative one-plot visualizations for these four variables include mosaic plots and

scatter plot matrices. A mosaic plot (see Figure 3) converts the number of comorbidities

and the number of hospital visits into categorical variables and loses the quantitative in-

formation. Because numerical variables can have many categories with few observations

per category, overplotting of the labels tends to occur. In Figure 3, some labels are re-

moved to avoid overplotting. For this particular variable order, the mosaic plot brings out

the larger percentage of females among adults-with-zero-hospital-visits (larger vertical blue

box) as compared to the corresponding percentage for adolescents and children. Overall,
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the Mosaic plot is not effective for these data.

A scatter plot matrix of the asthma data (not shown) loses information about frequen-

cies due to overplotting and there is no information about missing values. Jittering, a

counter measure to overplotting, is also not effective here.

Figure 2 has two numeric (hospitalizations, comorbidities), one ordered categorical

(group), and one unordered categorical variable (gender). The user can choose the or-

der of unordered categories, and can reverse the order of the categories for the ordered

categorical variable. Moreover, the variable order can also be changed. Different orderings

may facilitate different insights in the data. The order of categories is further discussed in

the discussion.
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Figure 3: Mosaic plot of the asthma data (Implementation ggmosaic in R). Male gender is

highlighted in red. Labels have been thinned out to avoid overplotting. The Mosaic plot

is not as effective as the hammock plot for these data.
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2.3 The line width illusion

The distance between two parallel lines is perceived at a right angle rather than as the

vertical distance between the lines (Wallgren et al., 1996; Tufte, 2001). An example of such

a line width illusion is shown in Figure 4. The vertical distance between all parallel lines

in Figure 4 is the same. However, most readers focus on orthogonal rather than vertical

Your intention Readers' perception

Figure 4: The line width illusion: The distance between two parallel lines is perceived at

a right angle (inside the circle) rather than as the vertical distance between the lines. The

vertical lines with arrows on both sides all have the same length.

width.

The line width illusion is part of the family of Müller-Lyer illusions where two lines of

same length appear to be of different lengths. (Hofmann and Vendettuoli, 2013). Closely

related is also the sine illusion (VanderPlas and Hofmann, 2015) where a sine wave com-

posed of equal-length vertical lines is perceived to have lines of unequal lengths (lines at

the peak and trough of the curve appear to be longer).

2.4 Rectangles avoid the reverse line width illusion

Hofmann and Vendettuoli (2013) point out “centering of the lines creates a strong contex-

tual cue that encourages an evaluation of line widths using the [vertical] measure, leading

to a reverse line width illusion.” They demonstrated in an empirical study that this can
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sometimes confuse readers. An example is shown in Figure 5a. Both parallelograms have

equal (orthogonal) widths. Because the blue parallelogram is angled, the vertical width of

the angled blue box is larger. When you just focus on the end point on the left, the blue

angled box appears bigger. This is the reverse line width illusion. To remedy the situation,

I am now proposing to use rectangles instead of parallelograms (see Figure 5b). Because

the vertical length is no longer shown at the end point, the illusion disappears.

x1 x2

(a) Parallelograms

x1 x2

(b) Rectangles

Figure 5: Illustrating the reverse angle width illusion. Left: Even though they have the

same right-angle width, the endpoints of the parallelograms appear to suggest that the red

box is wider than the blue box. Right: The use of rectangles instead of parallelograms

prevents this illusion.

Appendix A explains how to compute the coordinates of the rectangle. The Shakespeare

example will use rectangles in Figure 14.

2.5 Implementations

Hammock plots are implemented in Stata in the package hammock (downloadable as usual

from the Boston archive SSC by typing “ssc install hammock”) and in R in the package

ggparallel (Hofmann and Vendettuoli, 2016) with method=“hammock”. A Python imple-

mentation called hammock plot is now available via pip install.

Figure 6 shows a hammock plot as implemented in ggparallel in R. The plot looks a

little different mainly because the numerical variables are shown as categorical variables.
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(Hammock plots with numerical variables is not implemented in ggparallel.) This imple-

mentation has nice stacked bars for the marginal frequencies. The frequencies are separately

displayed on the y-axis. If including missing values is desired, in the R implementation,

missing values need to be converted into a separate category (labeled “missing” or similar)

first.
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Figure 6: A hammock plot of the asthma data as implemented in ggparallel in R. This

implementation is limited to categorical variables and turns any numeric variables (hospi-

talizations, comorbidities) into categorical variables.
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3 Historical development

The focus of this section is on plots in the family of parallel coordinate plots as well

as the Sankey diagram which has some similarities. Mosaic plots (Friendly, 1994, 2002;

Hofmann, 2008) and other plots for categorical data are not further considered. The plots

are presented in historical order starting with the earliest plot. Table 1 gives a timeline.

Table 1: Timeline of Graphs with parallel coordinates and the related Sankey diagram

Year Name Special Purpose Categorical Numeric

vars? vars?

1885 Parallel coordinates coordinate transformation

1898 Sankey Diagram chart of flows

1985 Parallel Coordinate Plot yes

2002 Clustergram cluster assignments

2003 Hammock Plot yes yes

2005 Parallel Sets yes binned

2010 Alluvial Plot network vars over time yes

2013 Common Angle Plot yes

2013 Categorical par. coord. plot yes yes

2020 Generalized par. coord. plot yes yes

Parallel coordinates. In 1885, Philbert Maurice d’Ocagne wrote a book about par-

allel coordinates (d’Ocagne, 1885). d’Ocagne’s book describes a method of coordinate

transformation much like the transformation between polar coordinates and Cartesian co-

ordinates. While d’Ocagne was the first to propose parallel coordinates, his mathematical

treatment – full of equations – did not, in my opinion, foreshadow parallel coordinates as

a technique to visualize data.

Sankey Diagram. Sankey diagrams (Sankey, 1898) are used to visualize flows of

energy and materials. To do so, Captain Sankey used arrows with a width proportional

to the flow. In modern implementations the arrow tips are sometimes omitted. Figure 7
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gives a simplified example of the flows of materials as they pass through the EU economy

(inspired by Eurostat, 2021). The flows can merge and separate again. Some flows end or

start sooner than others in the graph, and it is possible to have circular flows and flows

that go around corners (not shown in Figure 7 due to software limitations).

Unlike the plots described below, Sankey diagrams do not visualize variables. While

Figure 7 might suggest there are 5 parallel axes corresponding to 5 variables, this is not the

case. Rather than specifying variables, to construct a Sankey diagram each flow segment

has to be specified separately. Schmidt (2008) gives a historical introduction to Sankey

diagrams.

imports

natural resources

material

dissipative flows

exports

total emissions

material use

waste treatment

material accumulation

emissions to water

emissions to air

incineration
backfilling

waste landfilled

recycling

Figure 7: Sankey diagram of flows of materials through the EU economy. Sankey diagrams

do not visualize variables. They may have different end points (shown) and circular flows

(not shown). (Implemented in sankey in Stata)

Parallel coordinate plot. The well-known parallel coordinate plot (Inselberg, 1985;

Wegman, 1990) is suitable for visualizing continuous variables. Missing values are not

explicitly considered. The parallel coordinate plot can be generated from a hammock plot
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by replacing the box elements with lines (or making the box width so small that all boxes

look like lines). Figure 8 displays the hammock plot for the asthma data shown in Figure 2

as a parallel coordinate plot.
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1.00

group hospitalizations comorbidities gendergroup

gender

female

male

Figure 8: Parallel coordinate plot of the asthma data. (Implemented in ggparcoord in R).

Categorical variables result in the overplotting of lines. This plot is less effective here.

Clustergram. The hammock plot was motivated by the clustergram (Schonlau, 2002,

2004), a plot for visualizing the result of clustering algorithms. Figure 9 shows an example

visualizing the assignments resulting from a kmeans clustering algorithm. We see how

observations are assigned to clusters as the number of clusters on the x-axis increases.

As before, the width of the box is proportional to the number of observations in it. Of

course, there are variations on how width can be defined. On the y-axis the clustergram

displays either the mean values or the PCA weighted mean values as suggested in the R

implementation by Tal Galili. We can see that there are hierarchical splits until we have

three clusters. Then non-hierarchical splits start as we increase the number clusters to four

and some observations rejoin other branches. The clustergram is implemented in R (Galili,
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Figure 9: Example of a clustergram (implemented in clustergram in Python). Clustergrams

visualize changing cluster assignments. They do not visualize variables, but are the direct

precursor of the hammock plot.

2010), Python (Fleischmann, nd) and Stata (Schonlau, 2002).

Hammock plots. Among plots with parallel axes, hammock plots (Schonlau, 2003)

were the first plots to accommodate categorical variables. Unlike some successor plots,

hammock plots also accommodate numerical variables (see Table 1).

Parallel sets plot. The parallel sets plot (Kosara et al., 2006) is a variation on the

earlier hammock plot. The main difference is as follows: for the parallel set plot the number

of observations is proportional to the vertical width of the box instead of the minimal

(orthogonal) distance. Since the vertical distance is meaningful, different boxes that lead

from a single category to multiple categories on the next axis can easily be arranged on

top of each other. This gives nice univariate views of how single levels on a given axis are

subdivided into boxes. A disadvantage is that the parallel sets plot suffers from the line

width illusion that the hammock plot avoids.
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Parallel sets plots incorporate numeric variables by dividing the axis into bins, effec-

tively turning the numeric variable into a categorical variable. The Kosara et al. (2006)

implementation is very strong and includes interactive elements.

Alluvial plot. In 2010, Rosvall proposed alluvial plots (Rosvall and Bergstrom, 2010)

to visualize network variables over time. Rather than using bars to connect axes, alluvial

plots use rounded curves. Alluvial plots are now also used to visualize categorical variables.

Figure 10 shows an alluvial plot for the asthma data. This implementation displays a

category for missing values (at the top of the group variable), but only for variables that

have missing values. Alluvial plots are not suitable for numeric variables.
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Figure 10: Alluvial plot of the asthma data (Implementation alluvial in Stata). The default

color arrangement is shown. Alluvial plots use rounded curves to connect neighboring axes.

They are not suitable for numeric variables.

Common angle plot. In order to avoid the line width illusion, the orthogonal distance

in hammock plots is proportional to the number of observations. This increases the vertical

width of individual blocks. The increase factor depends on the angle of the boxes. Because
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each box protruding from a category has different angles, the increase factor is different for

different categories. Therefore, it is not possible for the vertical and orthogonal distance

to both be proportional to the number of observations. Hofmann and Vendettuoli (2013)

point out that the line width illusion arises when comparing line segments drawn at different

angles. They proposed a novel box element consisting of two rectangles (or box stumps) at

either end and a angled parallelogram in the middle. An example is shown in Figure 11.

Importantly, they use the same angle for all angled segments leading from one category

hammock (parallelogram) hammock (rectangle) parset common angle

Figure 11: Box elements used by hammock plots, parset and common angle plots. The

double-headed arrow inside of the boxes defines the width, the quantity that is proportional

to the number of observations.

to the next variable. The farthest away segment determines the angle; the remaining

angles can be kept constant by increasing the length of the rectangles at either end. The

width of the angled segments is not explicitly specified; it arises as a function of the angle.

This ingenious solution allows comparison between multiple segments protruding from one

category. It does not allow comparison among line segments from multiple categories

(because the angles will not be the same). A common angle plot of the asthma data is

shown in Figure 12. By default, the package assigns a different color to every category of

every variable displayed. Here, we chose a different color palette for each axis.

Categorical parallel coordinate plots (CPCP). Starting from parallel set plots,

categorical parallel coordinate plots (Pilhoefer and Unwin, 2013) propose reordering boxes

to reduce visual clutter. Specifically, for a given category in each axis, boxes can be

reordered to minimize the crossing of boxes. The paper contains a plot with one continuous

variable. Like in hammock plots, the numeric variable is not binned. (However, the current
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Figure 12: A common angle plot of the asthma data. (Implemented in ggparallel in R.)

Such plots use the same angle for all angled segments leading away from one category.

implementation in R, extracat::scpcp, treats numerical variables as categorical.)

Generalized parallel coordinate plot (GPCP). Generalized parallel coordinate

plots (VanderPlas et al., 2023; Ge and Hofmann, 2020) are designed to follow individual

observations. A GPCP plot for the asthma data is shown in Figure 13. When observations

start and end in the same two categories of two neighboring categorical variables, their lines

are parallel and effectively form a box that looks like a parallelogram. When the number of

observations is large, one cannot easily trace individual observations and the parallelogram

may appear dense.

GPCP plots are similar to hammock plots in that they both allow for numeric variables

and that the width of the boxes between two categorical variables is proportional to the
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Figure 13: A generalized parallel coordinate plot of the asthma data. (Implemented in

ggpcp in R.) For larger data sets, the individual lines for each observations appear as

areas. When many observations have the same value for a categorical and an adjacent

numerical variable, the corresponding area looks like a triangle.

number of observations (where the GPCP boxes are formed by parallel lines). They look

different for numerical variables: When multiple observations terminate in the same value,

triangles (between a categorical and a numerical variable) and lines (between two numerical

variables) appear. The hammock plot uses constant-width boxes. This is further explained

in Section 4. Notice the lines/boxes between the variables hospitalizations and comorbidi-

ties in the GPCP (Figure 13) and hammock plots (Figure 2). Most of the observations are

in the boxes leading from hospitalizations=0 to either comorbidities=0 or comorbidities=1.

This is far more obvious in the hammock plot than in the GPCP plot.

By contrast, hammock plots can trace some individual observations using highlighting

by assigning some individual observations different colors.
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4 Boxes that connect adjacent variables

Here, we consider different shapes and widths of boxes in hammock-type plots, that is, plots

that use parallel axes and accommodate categorical variables. Table 2 lists characteristics

of the boxes that connect adjacent variables. Different box shapes between two categorical

Table 2: Boxes that connect two adjacent variables in hammock-type plots

box shape between...
what defines
box width?

box
width2 categorical 1 cat + 1 num 2 numerical

... variables

hammock
parallelogram/

rectangle
parallelogram/

rectangle
parallelogram/

rectangle right-angle frugal

parset parallelogram a a vertical wide

CPCP parallelogram a a vertical wide

GPCP
like

parallelogram
narrows to
single point line like vertical wide

common
angle angled a a box stumpb widec

alluvial curved a a box stumpb wide

a Plot does not accommodate numerical variables.

b For a horizontal box stump right-angle width and vertical width coincide.

c An “adjusted” version of the common angle plot allows reducing the box width.

variables were shown in Figure 11. The box shape between two categorical variables for

the generalized parallel coordinate plot (GPCP) is listed as “like parallelogram” for the

following reason: The GPCP traces individual observations. To the extent that multiple

observations have the same start and end category, their lines are parallel. The shape of

the parallel lines resembles a parallelogram, and the implied width of the parallelogram is

the vertical width.

The hammock plot does not change the box shape when connecting to a numerical

variable. By contrast, the GPCP does not maintain the width of the boxes but narrows

to a single point. Narrowing boxes between categorical and numerical variables appear as

triangles (see, for example, Figure 13 between group and hospitalization), and, between

20



two numerical variables, the box shape is an (overplotted) line (see, for example, Figure 13

between hospitalizations and comorbidities). When connecting two numerical variables, the

GPCP is identical to parallel coordinate plots.

Parallel Sets, common angle, and alluvial plots do not accommodate numerical vari-

ables. The implementation of categorical parallel coordinate plots (R implementation ex-

tracat::scpcp) also does not currently support continuous variables. Of course, numerical

variables can be binned.

The boxes in hammock plots are less wide compared to other plots listed in Table 2.

This tends to leave more white space in hammock plots (see Figure 2). The smaller box

width is a consequence of maintaining the width of the boxes when connecting to numerical

variables (rather than narrowing to a single point). Consider the number of hospitalizations

in Figure 2 with values 0, 1, 2, 3, 4, 5 and 20. When treating this variable as categorical

with 7 categories, each equally spaced category is assigned (up to) one seventh of the space.

(Box width is “wide” in Table 2). When treating this variable as numerical, the range from

0 to 20 leaves 1/21th of the space for each unit length. Consequently, the widths of the

boxes have to be more frugal.

The boxes of the common angle and alluvial plots are not straight, so no single width

applies. They both have in common that they start out and end with a horizontal box

stump. The common angle plot connects the stumps at an angle; the alluvial plot connects

the stump with curvature. If the box stump is horizontal (that is, not angled), the vertical

width and the right-angle width coincide.

5 Example: Shakespeare Data

Social class has traditionally played an important role in England. For example, during

Shakespeare’s time, Sir Thomas Smith divided the British population into four classes:

Gentlemen, Citizens, yeoman artificers and labourers (using lower capitalization for the

latter two) (Smith, 1583). Such social class structures are reflected in Shakespeare’s plays.

The Shakespeare data compiled by Lee Wilkinson (Wilkinson, 1999b) contain one ob-

servation for each play Shakespeare has written. The data set was released as part of
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Wilkinson’s book (Wilkinson, 1999a).

The data used here contain six variables in addition to the name of the play: type (of

play), speaker1, speaker2, sex1, sex2 and the number of characters who appear in the play.

The variable type refers to a play’s classification as either a tragedy, history, or a comedy.

Variables sex1 and sex2 correspond to the gender of the first two persons speaking in the

play. The first two persons speaking are also classified by their social station: royalty,

nobility, gentry, citizen, yeomanry, beggars. Table 3 gives an overview over how Wilkinson

classified characters into social classes. The class “yeomanry” generally refers to individuals

Table 3: Social class membership of the first two speakers of Shakespeare’s plays in de-

scending order of class

Class Membership

Royalty king, queen

Nobility prince, governor, duke, lord, count

Gentry gentleman, senior military, bishop, Tribune (Roman official)

Citizen merchant, carpenter, poet, painter, shipmaster

Yeomanry servant, porter, messenger, common soldier, boatswain, guard, hostess

Beggars beggar

NA witch

of low status. The class “beggars” as a separate class may be unusual, but is useful here

as it extends the social class hierarchy of the first two speakers at the bottom end. The

witches in the opening scene of Macbeth are the only characters not classified into one of

the social classes. Alongside fairies and ghosts, such supernatural characters defy the strict

class hierarchy.

Wilkinson’s social status classification is one of several similar classifications. Archer

and Culpeper (2003)’s classification differs from Wilkinson’s as follows. At the top end,

Wilkinson’s classification distinguishes between royalty and nobility whereas Archer com-

bines them. At the bottom end, Wilkinson adds “beggars” as a separate class, whereas
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Archer combines them with the low status class (yeomanry). Wilkinson’s class “citizen” is

split further into three classes (in descending order of status): professions (doctor, lawyers,

etc.), other middling groups, ordinary commoners. It should be noted that none of the

first or second speakers are doctors, lawyers, or similar professionals. Neither Wilkinson

nor Archer makes provisions for supernatural characters like witches. Murphy (reported

in Gillings, 2017) classified all of Shakespeare’s characters by social class. In addition to

Archer’s classification, Murphy adds a class for Monarchy (exactly like Wilkinson’s “Roy-

alty” class), a class for supernatural characters, and a class for problematic characters

(actors, poets, and characters whose social status changes).

Figure 14 shows a hammock plot of the Shakespeare data (using rectangles rather than

parallelograms as plotting elements). The following statements refer to the data presented

only, and no inferences to characters other than the first two speakers are implied. With

this in mind, Figure 14 reveals quite a bit about this data set: Historical Shakespeare

plays never open with women and most speakers in historical plays are royalty or nobility.

Historical Shakespeare plays open more often with nobility than royalty, possibly because

there were simply more noble men and women than royalty in society and also in the

fictional worlds presenting a selection from society. Shakespeare’s comedies tend to have

a smaller number of characters than histories or tragedies. Comedies feature women and

beggars in the opening of plays (but not often). There is one tragedy that opens with two

women, but their social status is missing. We recall these are the witches in Macbeth.

Except for the witches in Macbeth, no woman ever talks to another woman in the opening

lines of Shakespeare’s plays. Except for the witches in Macbeth, female characters in the

opening lines only appear in comedies. The first two speakers usually do not speak much

below their social station: royalty does not speak with anybody lower than nobility, nobility

mostly talk to nobility and royalty, gentry mostly talk to gentry, and so forth.

If there is a dependent variable, we may want to highlight different categories of that

variable. If the dependent variable is numeric, we might choose to highlight different

quartiles, or something similar. Highlighting the dependent variable allows us to gauge

how individual x-variables relate to it. Here, type of play may be considered a dependent
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Figure 14: Hammock plot of the Shakespeare data. Each observation represents one of

Shakespeare’s plays. The indices 1 and 2 refer to the first two characters to speak in each

play. “M” refers to “male” and “F” to “female”. Play type is highlighted (tragedy=grey,

history=blue, comedy=red).

variable, and the plot is already highlighted by type of play. As mentioned above, a smaller

number of characters makes a comedy more likely. A play opening with women is not a

historical play. A play opening with beggars, yeomanry, citizens, or gentry is likely not a

historical play.

Figure 15 gives a GPCP plot of the Shakespeare data. The small number of observations

plays to strength of GPCP: we can trace each individual play easily. In the hammock plot,

tracing an individual play would require highlighting. In the GPCP, the grey shaded

bars nicely give univariate information about each variable. Such bars are not currently
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Figure 15: GPCP plot of the Shakespeare data as implemented in ggpcp in R. “M” refers

to “male” and “F” to “female”. Play type is highlighted (tragedy=grey, history=blue,

comedy=red). In the black and white version tragedy is the darkest, comedy the lightest

color.

implemented in the hammock plot. Similar to Figure 13, several “triangles” are starting

to form between the first two variables, specifically for comedic plays that have the same

number of characters. Because of the small number of observations, the triangles are not

filled solid and they do not look odd here.

In the hammock plot the social class of speaker1 lines up with that of speaker2. This

is not the case in GPCP: observations are equally spaced vertically, and so the categories

generally do not line up.

Arguably, some aspects of the bivariate relationships maybe a little easier to see in the

hammock plots than in the GPCPs. For example, 1st speaker citizens talk to 2nd speaker

citizens only in tragedies (because they are connected by a single grey box). Arguably, the

color composition of the boxes is also easier to read in the hammock plot. In the GPCP plot
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there is little space between two observations that belong to different categories making

this harder to see.

Tracing individual plays is possible in the hammock plot also. For example, Figure 16

highlights the play with the fewest number of characters, “Taming of the Shrew”. We can
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Figure 16: Hammock plot of the Shakespeare data. Each observation represents one of

Shakespeare’s plays. The indices 1 and 2 refer to the first two characters to speak in each

play. “M” refers to “male” and “F” to “female”. The play with the fewest number of

characters (“Taming of the Shrew”) is highlighted.

clearly trace this play through the six variables shown.

To understand what plots look like for larger data sets, we now replicate each observation

in the data 50 times and create the hammock and GPCP plots again. The hammock plot in

Figure 14 is unchanged. The boxes represent a greater number of observations but the plot
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is unchanged. The revised GPCP plots is shown in Figure 17. The individual lines have
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Figure 17: GPCP plot of the Shakespeare data as implemented in ggpcp in R. Compared

to Figure 15, each observation has been replicated 50 times. In the black and white version

tragedy is the darkest, comedy the lightest color.

melted together to form solid areas. Triangles leading to the numerical variable are now

clearly visible. Individual observations are no longer visible. The labels and basic layout

are unchanged. Arguably, The GPCP plot in Figure 17 looks busier than the hammock

plot in Figure 14, but this is perhaps a matter of individual preference.

The Shakespeare data set is available as supplementary material. Some changes from

the original data set and the addition of the character variable are explained in the section

on supplementary material.
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6 Discussion

The hammock plot is best suited for visualizing a handful of variables at a time. For a

much larger number of variables, the graph may get difficult to read. Hammock plots

accommodate a mixture of categorical/numeric variables with ease, and therein lies a key

strength. For categorical variables, the hammock plot scales well to a large number of

observations: the boxes simply represent more observations. For continuous and count

variables, large numbers of observations will lead to more clutter.

Hofmann and Vendettuoli (2013) have pointed out that hammock plots suffer from the

reverse line width illusion. Here, I have proposed a modification, using rectangles rather

than boxes, that avoids the reverse line width illusion.

Missing values form an extra category for visualization. For categorical variables, this

increases the number of categories to visualize by one; for continuous variables, the ham-

mock plot adds a category below the smallest value. Because all variables may have missing

values, it is natural to visualize missing values in the same position (e.g., at the bottom)

on each axis. While the literature has occasionally addressed visualizing missing values

(Unwin et al., 1996; Swayne and Buja, 1998; Cheng et al., 2015; VanderPlas et al., 2023),

in my experience many analysts often ignore missing values when creating routine plots.

One reason may be that implementations usually do not make this easy by not offering a

“missing” option that includes missing values as part of the plot.

If the categories of a categorical variable are unordered, then the user is free to choose

whatever order they like. In their general approach to “effect ordering for data displays”,

Friendly and Kwan (2003) propose orderings based on eigenvalue or singular-value decom-

position. There has been some work on guiding the user in choosing category order in

hammock-type plots (VanderPlas et al., 2023), but there is room for more research. Op-

tions for choosing category order include: 1) Arrange categories to minimize crossings of

boxes. 2) Arrange categories to minimize the weighted number of box crossings where

the weights are proportional to the width of the box, or equivalently, the number of ob-

servations the box represents. 3) Arrange categories to maximize similarities of adjacent

categories where similarities need to be defined in some way.
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The ordering of axes affects the visual presentation. In some cases, the axes may have

a natural order, such as when each axis corresponds to a different point in time. More

often, the axes do not have a natural order. In practice, trial and error reveals the most

effective visualization. Different orderings may emphasize different patterns in the data

and some orderings may reduce clutter more than others. Likely, a single plot does not

serve all purposes.

The implementation can make a difference to the appearance of the graph. The R im-

plementation of the hammock plot has very nice marginal stacked bar charts but currently

treats numerical variables as categorical variables; information about distance between the

categories is lost. Of course, it is possible to update the R implementation to accommodate

numerical variables also. I am very grateful for the R implementation by Hofmann and

Vendettuoli (2016).

The choice among hammock-type plots may boil down to whether the visualization

involves only categorical variables and what analysts are focused on. Parsets and alluvial

plots focus on univariate descriptors and link the categories with boxes. For parsets, the

boxes suffer from the line width illusion. Alluvial plots just connect the univariate descrip-

tors, and the curved connectors may look pretty. Hammock plots focus on the boxes, and

thereby the bivariate relationships the boxes represent. Common angle plots are able to

focus on both univariate and bivariate relationships at the cost of using a more complicated

box element.

If the visualization involves both categorical and numerical variables, the choice narrows

to hammock plots and GPCP plots. For small data sets, GPCP plots beautifully show all

individual observations whereas hammock plots require highlighting to feature individual

observations. For larger data, arguably similarities of hammock and GPCP plots outweigh

dissimilarities. To some, hammock plots may appear less cluttered, but others may appreci-

ate the larger bar widths of GPCP plots. When connecting two numerical variables GPCP

plots show lines regardless of many observations the line represent. In this particular case

the hammock plot may be more helpful. When connecting a categorical to a numerical

variable, the GPCP plots show visual triangles whereas hammock plots do not. Triangles
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no longer have a constant “width”, but they have the advantage of taking up less space.

SUPPLEMENTARY MATERIAL

Appendix A Computing coordinates for the rectangle

Overview Spreadsheet that describes which code file corresponds to which plot.

Code files Stata/R/Python code reproducing the plots shown in this manuscript.

Asthma data set Data set used for illustration. (both csv and Stata12 versions)

Shakespeare data set Data set used for illustration (Wilkinson, 1999a). (both csv and

Stata12 versions). The number-of-characters variable (Open Source Shakespeare,

2019) has been added to Wilkinson’s data. The following changes have been made

to Wilkinson’s data:

• Hamlet and King Lear are missing from the original data and have been added.

• Macbeth: The type of play was corrected to be a tragedy. The first two char-

acters are witches. Supernatural characters do not fit into the ordered social

class structure. I set their social class to missing. (The original classification

mistakenly had two male characters.)

• Antony and Cleopatra: The first speaker, Philo, a soldier, talks to Demetrius,

another soldier. Before Demetrius has time to respond, Cleopatra and Antony

appear on the other side of the stage and are the second and third speakers.

Philo never speaks to Antony or Cleopatra. I treat the two soldiers as first

speakers for the purpose of this classification. Following Wilkinson’s original

classification, I assume they are senior soldiers and classify them as gentry.

The following classifications are unchanged but merit additional explanation:

• Cymbeline. Wilkinson classified Cymbeline as a comedy. Depending on the

critic, it is sometimes classified as a tragedy.
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• Edward III and Noble Kingsmen. Wilkinson did not include Edward III and

Noble Kingsmen because they are not in the Yale Shakespeare collection. They

are not in Shakespeare’s first folio and authorship is disputed. Pericles is also

not in the first folio but authorship is more certain.
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