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1 Introduction

The computer models we have experienced are eval-
uated through complex, deterministic code. Given
the same inputs, these computer models always re-
produce the same outputs. Typically, the code will
to be expensive to rum, e.g., it may solve a large
number of differential equations which may require
several hours or more of computer time. Because of
the code’s computer intensive requirements, com-
puter experiments have been employed for finding
a good cheap-to-compute surrogate (i.e., predictor)
for the computer model.

Thus far computer experiments have focused on
building computationally cheap nonparametric pre-
dictors. See, for example, Currin et al. (1991),
Sacks, Schiller and Welch (1989), Sacks, Welch,
Mitchell and Wynn (1989), and Welch, Buck, Sacks,
Wynn, Mitchell, and Morris, (1992). In recent work
with some mechanical engineers, however, ezplana-
tion rather than prediction was the overriding ob-
jective. The engineers had developed a computer
code for the performance of a solar collector and
wanted to know quantitatively what the impact of
six design factors was on the response, heat ex-
change effectiveness. More specifically, they were
interested in finding a paremeiric model that ex-
plained the complex functional relationships em-
bodied in their computer code.

In general, finding a parametric model is non-
trivial because the typical relationship is highly
nonlinear and there are no obvious classes of mod-
els from which to choose. In this paper we pro-
pose identifying approximating parametric models
from a graphical analysis of a nonparametric model.
Note that here the nonparametric analysis of com-
puter experiments is an intermediate tool rather
than an end in itself. As will be shown, the identi-
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fication process is fairly automatic.

An overview of this section is as follows. Section
2 first outlines a nonparametric method for ana-
lyzing data from a computer experiment and then
explains how parametric models can be identified
graphically. Section 3 demonstrates these ideas us-
ing data from a computer experiment on the solar
collector code mentioned above. Some discussion
regarding the choice of experimental design is also
given. The section concludes with a discussion in
Section 4.

2 Identifying Parametric Non-
linear Models

Identifying a class of nonlinear models that fit the
data well is easy if there is only one covariate. A
simple scatter plot would reveal the functional rela-
tionship which for a computer model is exact since
the relationship is deterministic. Then, the data
analyst can choose a class of models suggested by
the scatter plot and fit the model using standard
nonlinear regression software to obtain parameter
estimates. This approach was used in a case study
presented in Bates and Watts (1988, Section 3.13)
for physical experimental data which contained ran-
dom error. While the data from a computer exper-
iment contain no random error, the objective here
remains the same, i.e., to find a good approximating
model.

However, scatter plots are not very useful for
model identification where there is more than one
covariate, as the relationship between the response
and each covariate can be masked by the relation-
ships between the response and the other covari-
ates (e.g., Montgomery and Peck, Section 4.2.5). To
overcome the masking problem, a plot of a function
involving only the covariate of interest is needed.
In other words, the effects of the other covariates
need to be eliminated. Such plots will be consid-
ered shortly after some preliminaries.

First, a brief overview of a nonparametric pre-
dictor of the computer model is given because the



nonparametric predictor plays a key role in the
method proposed shortly. The data from a com-
puter experiment consist of n vectors of covariate
values (or inputs) denoted by xi,...,x, for the k
covariates z1,...,2; a8 specified by a particular
experimental design. The corresponding response
values (or outputs) are denoted y = (y1,...,¥a)".
Then, following the approach of, e.g., Welch et al.

(1992), the response is treated as a realization of a

stochastic process:
Y(x) =8+ 2(x),

where E(Z(x)) = 0 and Cov(Z(w),Z(x)) =
o2 R(w,x) for two inputs w and x. The correlation
function R(-,-) can be tuned to the data, which for
this paper is assumed to have the form:

k ,
R(w,x) = [] exp(=6;lw; — z;[¥), (1)
j=1

where 6; > 0 and 0 < p; < 2. The p;’s can be
interpreted as smoothness parameters (smoother as
the p’s increase) which indicate the smoothness of
the response surface and the §’s indicate how local
the predictor is (more local as the 8’s increase).

The best linear unbiased predictor of y at an un-
tried x can be shown to be:

§(x) =A+r* (xR (y - 15), @)

where r®(x) is the vector of the correlations between
x and each of the n design points, £ is the gener-
alized least squares estimator of 8, R is the cor-
relation matrix with elements defined by (1) and
1 is a vector of 1’s. While this cheap-to-compute
predictor has proven to be accurate for numerous
applications, it does not reveal the relationship be-
tween y and z1,...,2Z¢ in a readily interpretable
way. Consequently, this predictor is unsuitable for
ezplaining the functional relationship between the
covariates and the response.

It is worth considering the situation when
the functional relationship between the covariates
Z3i,...,Z; and the response y is additive:

y = po + pa(z1) + p2(@2) + ... + pp(zs)-

In this situation, the difficult problem of identifying
a nonlinear function y(zi,...,zz) has turned into
the much easier problem of identifying u;(z;) for
i=1,...,k. Note that while the method proposed
later in this section does not assume additivity, an
important point is that additivity does make the
model identification much easier.
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Recall that in order to identify the functional re-
lationship between a group of covariates and the re-
sponse, the effect of each of these covariates needs
to be isolated from the remaining ones. When we
want to isolate the effect of a single covariate, the
true main effect of the covariate can be calculated
in the following two ways by:

1. Integrating out the other factors. The main
effects are defined as:

wi@) = [ vx) ] don,

h#i

(Sacks et al., 1989). They can be estimated by
replacing y(x) by §(x).

2. Keeping the other variables fized. For exam-
ple, the other variables might be fixed at their
respective midranges.

In both calculations, the unknown y(x) needs to
be replaced by §(x) from Equation (2). The first ap-
proach is preferred because it is analogous to anal-
ysis of variance in that all the other covariates are
averaged out. Note also that integrating §(x) is nu-
merically easy to perform if the x region is cuboidal
and if the correlations are in product from as in (1).
In a similar fashion, the joint effect of two or more
covariates can be investigated by integrating out all
the other covariates or fixing the other covariates at
specific values.

Main effects or joint effects (say, of two covari-
ates) can then be displayed graphically for each z;
and pair (z;, z;). By choosing a tentative model for
each of the effect plots which displays some key fea-
ture (i.e., impacts the response), an overall model
can be developed by adding up all the correspond-
ing candidate models.

If there are no interactions (and hence, additivity
holds) the k-dimensional problem has been reduced
to k one-dimensional problems. If large interactions
are present, then the interacting covariates need
to be considered jointly. Covariates can then be
grouped so that covariates in two different groups
do not interact. Provided that the groups contain
no more than two variables, candidate models may
still be identified from contour plots of the response.
For larger sized groups, such plots will generally
not be helpful. In this case, when faced with many
interactions, transforming the response may help
in reducing the apparent complexity. Experience
with a number of computer models, however, sug-
gests the complexity of computer models tends to



arise from nonlinearities rather than through inter-
actions.

Subsequently, the identified parametric model
can be fit using standard nonlinear regression tech-
niques. When there is additivity, starting values for
the parameter estimates can be estimated from the
main effect plots.

3 Application to a Solar Col-
lector Code

In this section, the proposed method is applied to
an expensive-to-compute computer model for the
heat exchange effectiveness between the air and an
unglazed transpired-plate solar collector with slot-
like perforations (henceforth, referred to as holes).
The use of equally spaced slot-like holes replaces the
unrealistic assumption of infinitesimally small and
infinitesimally close holes and thus, represents an
engineering novelty in the design of unglazed solar
collectors. Golneshan (1991) showed that the heat
exchange effectiveness for these solar collectors is a
function of six covariates, (1) inverse wind velocity,
(2) dimensionless slot width, (3) Reynolds number,
(4) admittance, (5) dimensionless plate thickness,
and (6) the radiative Nusselt number, as defined by
a system of differential equations. The computer
code (Cao, 1993) solves the system of differential
equations for given covariate values and requires
around two hours of computing time on a worksta-
tion. The response considered here is the increase in
heat exchange effectiveness attributed to the heat
transfer in the holes from the hole sides and is ex-
pressed as a percentage (0-100). For further de-
tails, see Cao (1993). For notational simplicity, in
the following, the six covariates listed above will be
referred to a8 =1, T2,...,Ze and the response as y.

The mechanical engineers who had developed the
solar collector code were interested specifically in
explaining the impact of the six covariates (which
are design factors) on the response heat exchange
effectiveness; ultimately, the explanation would
help to identify better solar collector designs. Note
that such understanding was not apparent from in-
specting the system of differential equations. The
engineers were interested in developing a surrogate
parametric model because empirical models of this
type existed in the literature for solar collectors
based on older technologies; they had no precon-
ceived idea of what form the model should take be-
cause the collectors with slot-like holes represented
state-of-the-art technology. Hence, the need arose
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for performing an experiment on the solar collector
code, i.e., a computer experiment.

The experimental design used for the computer
design was one that filled the six dimensional
cuboidal region, a so-called space filling design.
Specifically, a Latin hypercube design (McKay,
Beckman, and Conover, 1979) consisting of 100
points was chosen in which the minimum distance
between points (i.e., the covariate vectors) was
maximized. The design was found using ACED (Al-
gorithms for Constructing Experimental Designs)
which was developed by Welch. All the two-
dimensional projections of the Latin hypercube de-
sign can be seen in Figure 1, which shows that the
design is indeed space-filling.

Figure 1: Two Dimensional Projections of the Latin
Hypercube Design

Because the effectiveness response is a percent-
age, models in the logit of the response were con-
sidered. Scatter plots of the logit data (Figure 2)
indicate a possible linear trend in z; and z5. The
remaining relationships, if any, are masked by the
presence of the other covariates. In the following,
the proposed method for identifying a class of sur-
rogate nonlinear models will be applied.

The stochastic process predictor (2) for the logit
response was fit using the nonparametric method
outlined in the previous section by GaSP (Gaussian
Stochastic Processes), also developed by Welch.
Figure 3 displays a cross validation plot for the fit
in which each observed y is predicted using all the
remaining data and shows that the predictor is rea-
sonably accurate. Main effect plots were then gen-
erated using Method 1 (integrating out the other
covariates) as shown in Figure 4 for covariates z;
through zs. The main effect for covariate zg is very
flat, and all two-way interactions are close to zero
everywhere. These effects were considered negligi-
ble by the engineers. The features displayed in the



Figure 2: Scatter Plots of logit(y) versus z;
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Figure 3: Cross Validation of the Nonparametric
Model

main effect plots suggest that the effect of z;, z,,
and z3 are approximately linear and the effect of z5
is approximately quadratic.

The main effect plot for z4 is rather ragged. Al-
though the plot gives a good indication of the ap-
parently nonlinear z4 effect, it is doubtful that the
true z4 relationship is that bumpy. One possible ex-
planation is that the computer code may have some
numerical convergence problems in certain regions
of the x space. This possible erratic behavior may
then be erroneously attributed to z4 which clearly
has the most nonlinear or complex impact on the
response. Plots of the main effects using Method
2, where the other variables are fixed at their re-
spective midranges rather than being averaged out,
result in very similar graphs. For example, Figure
5 shows the Method 2 main effect plot for zs.

The nonlinear shape of the z4 main effect plot
which appears to asymptote can be captured by a
Michaelis-Menten model (Bates and Watts, 1988,
p. 329); the Michaelis-Menten model has long been
used to model the behavior of a limiting chemi-
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Figure 4: Main Effects for x; through x,, and + 2
S.E. of the Effects

Figure 5: Predicted §(x) versus z4 Using Method 2,
and §(x) =+ 2 S.E.[§(x)], where all other z Variables
are Fixed at their Midranges

cal reaction which rises at a decreasing rate to an
asymptote. A Michaelis-Menten type model also
arises in the context of a reciprocal link function
in a generalized linear model, where an inverse lin-
ear response function is assumed (McCullagh and
Nelder, 1989, p. 291). Here, to give more flexibil-
ity, the Michaelis-Menten model was augmented by
introducing an additional parameter 3, and takes
the following form:

1
- ﬁo+ﬁ1/z4:.

The overall model consisting of linear effects in z,,
T2, £3, and 25, a quadratic effect in z5 and the aug-
mented Michaelis-Menten model for £4 was then fit
using standard nonlinear regression software which
gave:

y

logit(y) = 6.601z; — 0.0028z3 — 35.41z, +
1

53.61z5 — 302.542% + ———rors 720




All of the parameters including the flexibility
parameter (3, were significant at the 0.0001 level.
Also, adding z¢ reveals that zs is not significant at
the .05 level. Although the data contain no random
error so that significance testing has no theoretical
grounds here, the results of the significance tests
do indicate the importance of the various effects
relative to the ability of the overall model to fit
the data. Note that the model contains only eight
parameters but fits the 100 data points quite well
as indicated by the corresponding cross validation
plot given in Figure 6. The fact that the parametric
nonlinear model does not fit the data as well as the
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Figure 6: Cross Validation of the Parametric Non-
linear Model

nonparametric model is not surprising, however,
since the parametric model is much simpler.

Some Comments on the Choice of Experi-
mental Design

Originally, a 452 fractional factorial design was
considered for the solar collector computer exper-
iment. A fractional factorial or even full factorial
design would have had several drawbacks, however.
First, if only a few covariates (factors) had an
impact, the design effectively collapses into a
smaller design with replications. But, replications
in a computer experiment are non-informative be-
cause of the deterministic nature of the computer
code and therefore would have been a waste of
resources. Second, it could have been easy to miss
an unknown effect by only experimenting at a
few different points for each factor. For example,
the exact nature of the nonlinear z4 effect would
have been difficult to identify with only four levels;
in fact, the dramatic nonlinear behavior of z4
surprised the engineers. Third, the decision of
where to place the levels becomes much more
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crucial for the factorial design; lower dimensional
projections of Latin hypercube design typically
consist of n distinct and spread-out points so that
their exact position is less important. Finally, a
45-2 fractional factorial design would have required
256 runs. This compares to the 100-run Latin
hypercube design that was used; even fewer runs
might have been sufficient.

4 Discussion

The examples presented in nonlinear regression
books typically deal with only a single covariate
z, where the functional relationship between z and
the response y is unknown. On the other hand, the
method proposed in this paper can be applied to an
arbitrarily large number of covariates.

There are certainly other ways to identify a para-
metric nonlinear model. For example, clever resid-
ual analyses in the hand of a skilled data analyst
may well lead to the same results. For the solar
collector experiment, an added variable plot for z4
based on a linear regression model for the remain-
ing covariates shows the effect of z4 is nonlinear, al-
beit with considerable scatter as displayed in Figure
7. This success is not surprising since the assump-
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Figure 7: Added Variable Plot for z4 in the Model
logit(y) = Bo + Prz1 + P22z + Bsz3 + Ps2s

tion of a linear model for the remaining variables
turns out to be a good approximation. If the true
model had contained several strong nonlinearities,
then added variable plots on their own would not
have sufficed.

Flaborate residual analyses are often not done for
three reasons: {1} They are hard to do, especially
when the “true” model contains more than one non-
linear effect. (2) Data analysts, especially inexpe-
rienced ones, may not always know about them.



(3) They can take a lot of time to perform. The
method presented here is easy and fairly automatic
for detecting nonlinear effects. It is not a panacea
for all “true” models, however. If the “true” model
cannot be transformed to an additive model with
few or no interaction effects, then identification of
nonlinear relationships with several covariates will
still be a challenge. For these cases, it is doubtful
whether alternate methods will work either.

The effect plots play a key role in the pro-
posed method and their resolution depends on the
experimental design used. The Latin hypercube
design is a desirable choice because the design
points fill the experimental region well and produce
high-resolution plots. Computer experiments typi-
cally use such space filling designs so the proposed
method is particularly suited to computer experi-
ments. While physical experiments typically collect
much less data than computer experiments, in prin-
ciple, the proposed method can be applied to phys-
ical experiments by adding a random error term to
the model.
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