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RESPONSE TO JAMES M. LUCAS

Lucas argues that one can take methods for the design
and analysis of physical experiments, in which Lucas has
considerable experience, and apply the same methods to de-
terministic computer experiments. We shall argue that alter-
native methodologies do about as well in simple situations
in which simple methods are adequate and perform much
better when the response relationship is nonlinear, as it of-
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ten is in a computer experiment. We first discuss Lucas’s
example and then address his general remarks.

When trying to demonstrate the effectiveness of a
method, it is tempting to simulate data from the assumed
model. Lucas succumbs to this temptation. He generates
data from a very simple model, then analyzes with full
knowledge of the same model. Because the model has only
bilinear interactions—that is, no nonlinearities—a two-level
design is adequate. Not surprisingly, this method produces
perfect prediction! Describing the two-level design as “op-
timum” is just saying, “If you already know the answer, this
methodology is guaranteed to find it!”

In Welch et al. (1992) an equivalent temptation would
have been to simulate data from the stochastic-process
model underlying our predictor. We felt, however, that read-
ers would be more convinced by generating responses from
a real, circuit-simulation computer code (definitely not a
realization of a stochastic process) and showing that our
method worked well, without major assumptions about the
form of the response function.

Lucas’s example is certainly not typical of the real com-
puter codes we have experienced. He notes that, because
of wide factor ranges, asymptotes—that is, nonlinearities—
are to be expected and that second-order polynomials can
give poor results. Yet Lucas’s model does not include non-
linear terms, nor would his design find even quadratic
second-order terms. His example response surface is com-
plex through the presence of many interactions. In our ex-
perience, although interactions can be present, computer
codes tend to be complex through nonlinearities rather than
through interaction.

Even though Lucas’s model is very unrealistic, it is a
fair question to ask how our method performs. The two-
level factorial design is very inappropriate for fitting our
stochastic-process model (or for fitting other models, we
shall argue). In each input variable, z;, we use the correla-
tion function R(d) = exp(—60dP), a function of the distance
d between two values of z;. A two-level design always gives
d = 0 or d = 2 for all of the design points. We already know
that R(0) = 1, so the design gives one value of d to fit a

function. In addition, 12 parameters (10 correlation param-
eters, the stochastic-process variance, and an intercept) are
being fitted with 16 observations. Most statisticians would
beware of using maximum likelihood here, a method that re-
lies in general on asymptotic theory for its optimality prop-
erties. Not surprisingly, maximum likelihood estimation is
unreliable here.

The unreliability of maximum likelihood estimation is
well diagnosed by leave-one-out cross-validation. Suppose
that we fix p; = 2 for j = 1,...,5, a value that would usu-
ally imply an assumption of smoothness for the response
surface. Here, with only two levels in the design, p; 18
irrelevant. Setting 6; (j = 1,....5) to 10, 1, .1, .OL, or
001 gives cross-validation root mean squared errors vary-
ing from about 3.4 to 5.1—that is, large errors. The R? cri-
terion preferred by Lucas is around O or negative. We get
a warning that model fitting is problematic. Lucas gets no
such diagnostic when he fits an intercept, five main effects,
and 10 two-factor interactions with 16 runs. A perfect fit is
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guaranteed even if the fitted model is a poor approximation
to the true function. With one observation removed, fitting,
and hence cross-validation, is impossible.

It is quite revealing to decompose the predictor from the
stochastic-process model into main effects, two-factor in-
teractions; and so forth as described at the end of Sec-
tion 1 of Welch et al. (1992). As Lucas points out, for
large values of the 6,’s the predictor reproduces the two-
factor-interaction data at the half-fraction design points
and is O (i.e., a different relationship) on the complemen-
tary half fraction. This indicates interactions between more
than two factors at a time. On the other hand, if we set
6; = .001(j =1,...,5), then the 5 one-factor main effects
account for none of the variability in the predictor, whereas
each of the 10 two-factor interactions accounts for approx-
imately 10%—that is, the right conclusion. Moreover, the
estimated joint effects are almost exactly right. For exam-
ple, the joint effect of x; and z3, obtained by averaging
9(x) over z3 = +1,24 = +1, and x5 = 41, is given in
Table 1. The other nine estimated joint effects are the same
up to a sign change.

Thus, with small values of the 6,’s, the fitted stochastic-
process model says that data are explained by 10 two-factor
interactions (and the predictor is nearly perfect). With larger
vahlues of the ¢,’s the fitted predictor has higher-order in-
teractions. This is exactly the same conclusion as Lucas’s
analysis! His two-level, 16-run design aliases main-effects
and two-factor interactions with higher-order effects. No
method can overcome this deficiency in the design. The
stochastic-process model at least warns us through cross-
validation that many fitted models are roughly equivalent.
That small values for 6; (j = 1,...,5) give excellent pre-
diction here has some theoretical backing. Ongoing work
by Y. B. Lim, J. Sacks, W. J. Studden, and W. J. Welch
considers p; = 2 and #; — 0 for all input variables. Under
these conditions, the predictor can interpolate polynomials
exactly up to the degree allowed by the number of runs
and the design. In other words, where a simple polynomial
model suffices, the stochastic-process predictor can still do
well.

We would recommend more than 16 runs to investigate
five input variables in a computer experiment if comput-
ing resources allow. We would also recommend against
two-level designs. A data-adaptive, nonparametric predic-
tor such as ours cannot reveal nonlinearities in the response
relationship from such a design. For fitting Lucas’s model,
even if the true relationship is approximately the same, the
bias from a two-level design can be reduced. In a computer
experiment there is no variance from random error. A fit-

Table 1. Estimated Joint Effect y(x;, xz) for the 16-Run, Fractional-
Factorial Design, With pj= 2 and 6; = .001 (j= 1, ..., 5)
X1 Xz Y(x1, x2)
—1 -1 5988
-1 1 —.998
1 -1 —.998
1 1 .998

NOTE: The true joint effect takes values £1.
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Figure 1. Space-Filling Design for Five Factors and 24 Runs, Fro-
jected Onto x; and x,.

ted regression model gives prediction error only through
bias from model inadequacy. Box and Draper (1959, 1963)
considered designs for minimizing the integrated squared
bias. Suppose that the input variables are continuous, typ-
ically the case in a computer experiment, and that the in-
tegration is uniform. Box and Draper showed that a suffi-
cient condition for minimizing the integrated squared bias
is to match certain moments of the design with those of the
uniform distribution. This result holds quite generally. Fig-
ure 1 shows the projection onto z; and z; of a design for
five factors with 24 runs. It is a Latin hypercube (McKay,
Conover, and Beckman 1979), so the five input variables
are each covered uniformly. Within the class of Latin hy-
percubes, this design was chosen to maximize the minimum
distance between pairs of design points, the maximin crite-
rion proposed by Johnson, Moore, and Ylvisaker (1990) for
deterministic computer experiments. Their maximin crite-
rion is adapted such that distances are computed for two-
dimensional projections, ensuring fairly uniform coverage
for all two-dimensional projections. A space-filling design
with a uniform distribution of points, like that in Figure
1, would lead to less model-inadequacy bias when fitting
Lucas’s model if the model is approximately correct.

With 24 runs, maximum likelihood estimation of the cor-
relation parameters in the stochastic-process predictor is
still unreliable, but cross-validation is now conclusive. The
predictor based on maximum likelihood estimates of the
correlation parameters has an Rg value of about .75—that
18, a poor predictor. Putting ; = .0001 (j = 1,...,5), how-
ever, gives a cross-validation root mean squared error of
about .0037 or R2 of about 99.999%. Thus, with n = 24
runs cross-validation identifies a near-perfect predictor. The
estimated joint effect of x; and z9, for example, is shown
in Figure 2. It is very close to the true joint effect, z;zo.
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over the entire input-variable space. Thus, with this 24-run
design, we are able to predict the function well through-
out the space, not just at the vertices, and cross-validation
demonstrates the reliability of the predictor.

With a 32-run space-filling design, maximum likelihood
chooses very small values for the 6;’s and automatically
finds a near-perfect predictor.

To summarize Lucas’s example:

1. Two-level designs are poor for computer experiments.
It is full knowledge of the correct model, not a good de-
sign, that leads Lucas to a perfect predictor here. Fitting
Lucas’s model to data from a 16-run space-filling design
also produces a perfect predictor! Even if the true function
is approximately linear, bias can be reduced by covering the
space more uniformly.

2. Using the 16-run, two-level design, his analysis and
our predictor lead to essentially the same conclusion. The
data can be explained either by 10 two-factor interaction
terms or by higher-order interactions. Cross-validation can-
not distinguish the two possibilities.

Thus, Lucas’s example, apparently chosen to show the ad-
vantages of his method, shows no substantive improvement.
Compare this example with the two examples of Welch et
al. (1992), which are closer to real computer codes, at least
in our experience. They have nonlinearities, moderate in-
teraction, and high dimensionality (20 input variables). The
methodology espoused by Lucas is woefully inadequate to
deal with these examples.

We now discuss some of the more general remarks.

If Ri conveys useful information, then use it. In our ex-
perience, however, engineers specify the required accuracy
of prediction in terms of absolute or relative error.
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Lucas says that our approach “spends littie time in the
planning stage.” To carry out a traditional experimental de-
sign and analysis, one has to question engineers on the
possibility of nonlinearities, interactions, and so forth at
the design stage. Nonlinearities of unknown form cannot
be modeled later if the design has only two levels, for
example. Of course, we would certainly agree that prior
knowledge should be used when available, and this is of-
ten much more easily incorporated into our techniques than
with classical regression methods. Computer codes are in-
ternally complex, and inputs (and outputs) often have high
dimensionality. Under these conditions it is unrealistic to
expect definitive answers to these questions. Often, engi-
neers are surprised at the results of an experiment. From
working with scientists and engineers in various applica-
tion areas, we have typically found it more fruitful to pay
attention to

1. The input variables and their ranges. Computer ex-
periments often have very large ranges. In our experience
computer codes can become numerically unstable if ranges
are too wide.

2. Transformation of the input variables. If we see an
input ranging over several orders of magnitude, we discuss
the possibility of logarithmically spacing that input in the
design.

3. Parameterization. For example, in an article by Yu,
Kang, Sacks, and Welch (1991), transistor widths were the
inputs to a circuit-simulation code, but working with the
ratio of widths was suggested by engineering knowledge
for one pair of transistors.

4. Objectives, particularly trade-offs when they conflict.
Many computer experiments aim to optimize an engineer-
ing system. Sequential design, adapting the input ranges as
we learn about promising subregions of the input space, is
particularly useful (e.g., Bernardo et al. 1992).

What is carefully planned about Lucas’s hailf fraction and
model? The design is potentially disastrous if the relation-
ship is not linear. We are sure that Lucas never wants to
see in real applications a model like the one he fits in his
example. A model with no main effects, dominated by in-
teractions, suggests poor parameterization.

Despite the quote from Easterling (1989), a Latin hy-
percube is not pure random-number generation. The one-
dimensional margins are controlled so that we get plenty of
levels and nonlinearities can be modeled. As previously, one
can take a criterion to improve coverage in two- or three-
dimensional projections rather than completely randomiz-
ing higher-order projections. See also Morris and Mitchell
(1995). Even Latin hypercubes that randomize structure for
projections of two or more dimensions probably do very
well for most applications. Randomization of run order,
for example, is irrelevant in a computer experiment, but
randomization is also used extensively in design of exper-
iments to deal with uncertainty about unknown structure.
Since when is randomization a sin? In our opinion, mind-
lessly assuming that the relationship is linear, running a
two-level design, and hoping for the best offers much more
potential for disastrously misleading conclusions. The de-
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sign suggested by Lucas for six factors, a composite of
two-level and five-level designs. would probably also do
well in many applications. It is unfortunate he did not use
such a design in his example. Moreover, he gives no clues
about how he would deal with 20 or more input variables,
the main thrust of Welch et al. {1992).

Lucas raises the interesting question of how to choose
the number of runs in a computer experiment. We suggest
taking 10 times the number of active inputs (admittedly a
guess). Obviously more or fewer runs will be needed de-
pending on the amount of nonlinearity, interaction, and so
forth. In most applications this leads to fairly automatic
model fitting via maximum likelihood. After a first-stage
experiment, accuracy of the stochastic-process predictor
can be assessed by cross-validation. If accuracy is not good
enough, it is very easy to augment a space-filling design,
and a data-adaptive predictor will adapt to the new runs. In
contrast, bias arising from an incorrect regression model is
difficult to assess, and the bias cannot be reduced below a
certain level without introducing a better model.

Lucas’s comment that Sacks, Schiller, and Welch (1989),
Sacks, Welch et al. (1989), Currin et al. (1991), and Morris,
Mitchell, and Ylvisaker (1993) were concerned with design
for “best estimates of the assumed correlation functions” is
just wrong. In these works, designs were chosen to mini-
mize prediction error given the correlation parameters.

Our predictor does require estimation of the correlation
function. In this sense the estimated correlation function de-
pends on the data. Typically, uncertainty in estimating the
correlation parameters is ignored in theory and in compu-
tations. Even if this is discounted, there is a further source
of uncertainty in the predictor from interpolating between
design points. The latter source tends to dominate, at least
if an adequate number of runs is taken. As illustrated by
the examples of Welch et al. (1992), cross-validation is of-
ten a good indicator of predictive accuracy at new points.
Analysis of the estimated correlation function rarely helps
understanding of the computer code. Rather, we tend to use
visualization of the estimated effects.

Lucas’s comment, “Having only a few active factors
... raises questions about .. . the complexity of the ... code”
(p. 192) suggests some unfamiliarity with computer codes.
Typically a code produces several outputs. (In fact, the out-
put may include a function, for example, over time from
which summaries are extracted.) Even though an input is
inactive for some outputs, it might be active for others, and
overall the code is complex. Moreover, in our experience,
the experimenter running a computer code is often not the
code’s author. Code developers often do not know which

factors are important until they complete and run the code:
They are coding basic physics one component at a time.

Rational polynomials might be useful. Again, though, we
prefer to make few assumptions about the form of the rela-
tionship. In most applications, we suspect. the experimenter
is unable to specify the form.

One advantage of our methodology is that it is fairly au-
tomatic once the preceding planning decisions have been
made. Lucas points out that our methodology uncovers
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structure in the simpie example in Section 1 of Welch et
al. (1992). We agree that other methods might work well
after transformations, and so forth (though a two-level de-
sign would again be inadequate). Lucas’s attitude seems to
be that scientists and engineers should immerse themselves
in several courses on design of experiments, regression di-
agnostics, and so forth. Of course, science and engineering
would benefit immensely, but the reality is that much work
goes on with little statistical expertise.

Science and engineering need methods of analysis that
automatically work well in most cases without agonizing
over the form of the regression model. We have worked
on applications with about 40 input variables and 10 out-
puts of interest. Under these conditions, engineers welcome
automation! Commenting on trade-offs in conflicting objec-
tives, as indicated by visualization of the predictor, is a more
profitable and a more realistic use of engineering knowl-
edge. Some situations will require expert statistical advice,
so there will always be work for specialists like Lucas.

Lucas’s attitude is further revealed by his attack on
computer-aided design. Cook and Nachtsheim (1990), in
their response to Lucas (1990), pointed out that Lucas wants
to change the experimenter’s objectives to fit his design. The
same attitude pervades here. Despite experience to the con-
trary, we should hope that a computer code will be simple
enough to allow the use of traditional methods. We believe
that maximum statistical impact will be made when tools
for computer-aided design are widely available so that de-
sign is easy in realistic contexts.

One detail raised about computer-aided design concerns
the use of centerpoints. Algorithmically, it is very easy to
specify centerpoints, or any other points, in a design and
then augment those points according to some criterion. Of
course, if the right design is used in the first place—that
is, a design with better coverage of the input space—then
there is no need to fix it up with centerpoints.

At the beginning of his letter, Lucas says that a computer
experiment is a simpler, special case of physical experi-
ments. This comment is repeated later. We agree that the
lack of random error simplifies analysis. But this opportu-
nity is wasted if we carry over design and analysis meth-
ods aimed at minimizing the impact of (nonexistent) error
variance. “Special case” implies that a subset of existing
methodology for physical experiments will suffice. Com-
puter codes often have very many input variables, however,
and often have large nonlinearities. We believe that failing
to appreciate the distinctions between physical experiments
and computer experiments has led to some misconceptions.
We hope that these comments shed some light on the in-
creasingly important area of computer experiments, and we
thank Lucas for initiating this discussion.

Finally, we would like to note that Toby Mitchell died
before this rejoinder was written. In addition to his many
other accomplishments, Toby was a leader in bringing com-
puter experiments to the attention of statisticians. He car-
ried out much of the pioneering work in computer exper-
iments. Having worked closely with him for many years,
we believe he would have been in broad agreement with
our response.
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